Skip to main content
Log in

Anodic Stripping Voltammetry for the Determination of Trace Cr(VI) with Graphite/Styrene-Acrylonitrile Copolymer Composite Electrodes

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A square-wave anodic stripping voltammetry (SWASV) for the determination of trace amounts of hexavalent chromium Cr(VI) at a graphite/styrene-acrylonitrile (Graphite-SAN) copolymer composite electrode is described. This method involves a preconcentration step whereby the trace Cr(VI) was cathodically reduced to Cr(III) on an electrode surface in an acetate buffer (pH 5), followed by an anodic stripping technique with a square-wave voltammetric mode. It has been shown that the analytical sensitivity is significantly improved at the Graphite-SAN copolymer composite electrode in comparison with the conventional glassy carbon electrode, due to the strong interaction between Cr(III) and the nitrile end group of the SAN copolymer. The SWASV response was characterized with respect to the pH, deposition potential, possible interferences, etc. Under the optimal conditions, the stripping peak height linearly increased with the concentration of Cr(VI) in a range from 0 to 150 ng mL–1 with a correlation coefficient of 0.997, and a detection limit of 4.2 ng mL–1 was achieved based on signal-to-noise ratio of about 3. The Graphite-SAN composite electrode exhibited some interesting advantages, such as high mechanical rigid, easy surface renewable, higher sensitivity and better peak resolution in comparison with the results at conventional glassy carbon electrodes. They have been applied to the determination of Cr(VI) in real water samples with satisfactory recoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Mohan and C. U. Pittman Jr., J. Hazard. Mater., 2006, 137, 762.

    Article  CAS  PubMed  Google Scholar 

  2. R. T. Kachoosangi and R. G. Compton, Sens. Actuators, B, 2013, 178, 555.

    Article  CAS  Google Scholar 

  3. V. Gomez and M. P. Callao, TrAC, Trends Anal. Chem., 2006, 25, 1006.

    Article  CAS  Google Scholar 

  4. R. Karosi, V. Andruch, J. Posta, and J. Balogh, Microchem. J., 2006, 82, 61.

    Article  CAS  Google Scholar 

  5. Y. Inoue, T. Sakai, and H. Kumagai, J. Chromatogr. A, 1995, 706, 127.

    Article  CAS  Google Scholar 

  6. G. Hanrahan, D. G. Patil, and J. Wang, J. Environ. Monit., 2004, 6, 657.

    Article  CAS  PubMed  Google Scholar 

  7. V. Arancibia, E. Nagles, M. Gomez, and C. Rojas, Int. J. Electrochem. Sci., 2012, 7, 11444.

    Article  CAS  Google Scholar 

  8. F. Scholz, B. Lange, M. Draheim, and J. Pelzer, Fresenius’ J. Anal. Chem., 1990, 338, 627.

    Article  CAS  Google Scholar 

  9. S. Sander, T. Navratil, and L. Novotny, Electroanalysis, 2003, 15, 1513.

    Article  CAS  Google Scholar 

  10. Y. Li and H. Xue, Anal. Chim. Acta, 2001, 448, 121.

    Article  CAS  Google Scholar 

  11. L. Lin, N. S. Lawrence, S. Thongngamdee, J. Wang, and Y. Lin, Talanta, 2005, 65, 144.

    Article  CAS  PubMed  Google Scholar 

  12. E. O. Jorge, M. M. Rocha, I. T. E. Fonseca, and M. M. M. Neto, Talanta, 2010, 81, 556.

    Article  CAS  PubMed  Google Scholar 

  13. O. Dominguez, S. Sanllorente, and M. J. Arcos, Electroanalysis, 1999, 11, 1273.

    Article  CAS  Google Scholar 

  14. H. Gomathi and G. P. Rao, Bull. Electrochem., 1986, 2, 591.

    Google Scholar 

  15. S. R. Garcia, S. Alegret, F. Cespedes, and R. J. Forster, Analyst, 2002, 127, 1512.

    Article  Google Scholar 

  16. F. Cespedes, E. M. Fabregas, and S. Alegret, TrAC, Trends Anal. Chem., 1996, 15, 296.

    Article  CAS  Google Scholar 

  17. F. Kanwal, M. Imran, L. Mitu, Z. Rasyid, H. Razzaq, and Q. U. Ain, E-J. Chem., 2012, 9, 621.

    Article  CAS  Google Scholar 

  18. J. Jin, F. Xu, and T. Miwa, Electroanalysis, 2000, 12, 610.

    Article  CAS  Google Scholar 

  19. S. Reich and C. Thomsen, Philos. Trans. R. Soc., A, 2004, 362, 2271.

    Article  CAS  Google Scholar 

  20. C. C. Lee, G. Proust, G. Alici, G. M. Spinks, and J. M. Cairney, J. Microsc., 2012, 248, 129.

    Article  CAS  PubMed  Google Scholar 

  21. X. Crispin, C. Bureau, V. M. Geskin, R. Lazzaroni, W. R. Salaneck, and J. L. Bredas, J. Chem. Phys., 1999, 111, 3237.

    Article  CAS  Google Scholar 

  22. D. O'Hare, J. V. Macpherson, and A. Willows, Electrochem. Commun., 2002, 4, 245.

    Article  CAS  Google Scholar 

  23. A. J. Bard and L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, 2nd ed., 2000, John Wiley and Sons, New York.

    Google Scholar 

  24. C. M. Welch, O. Nekrassova, and R. G. Compton, Talanta, 2005, 65, 74.

    CAS  PubMed  Google Scholar 

  25. O. V. Bushkova, I. P. Koryakova, Y. A. Skorik, B. I. Lirova, A. V. Pestov, and V. M. Zhukovsky, Electrochim. Acta, 2008, 53, 5322.

    Article  CAS  Google Scholar 

  26. Q. Wang, J. Cui, G. Li, J. Zhang, F. Huang, and Q. Wei, Polymers, 2014, 6, 2357.

    Article  Google Scholar 

  27. V. Y. Kukushkin, and A. J. L. Pombeiro, Inorg. Chim. Acta, 2005, 358, 1.

    Article  CAS  Google Scholar 

  28. R. A. Michelin, M. Mozzon, and R. Bertani, Coord. Chem. Rev., 1996, 147, 299.

    Article  CAS  Google Scholar 

  29. B. N. Storhoff and H. C. Lewis. Jr., Coord. Chem. Rev., 1977, 23, 1.

    Article  CAS  Google Scholar 

  30. E. Hrabankova, J. Dolezal, and V. Masin, J. Electroanal. Chem., 1969, 22, 195.

    Article  CAS  Google Scholar 

  31. Y. Liang, Y. Liu, X. Guo, P. Ye, Y. Wen, and H. Yang, Sens. Actuators, B, 2014, 201, 107.

    Article  CAS  Google Scholar 

  32. J. Li, J. Zhang, H. Wei, and E. Wang, Analyst, 2009, 134, 273.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant No. 16K05813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiye Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sari, T.K., Jin, J., Zein, R. et al. Anodic Stripping Voltammetry for the Determination of Trace Cr(VI) with Graphite/Styrene-Acrylonitrile Copolymer Composite Electrodes. ANAL. SCI. 33, 801–806 (2017). https://doi.org/10.2116/analsci.33.801

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.801

Keywords

Navigation