Skip to main content
Log in

Simple and Rapid Immobilization of Coating Polymers on Poly(dimethyl siloxane)-glass Hybrid Microchips by a Vacuum-drying Method

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A simple and rapid vacuum-drying modification method was applied to several neutral and charged polymers to obtain coating layers for controlling electroosmotic flow (EOF) and suppressing sample adsorption on poly(dimethyl siloxane) (PDMS)-glass hybrid microchips. In the vacuum-dried poly(vinylpyrrolidone) coating, the electroosmotic mobility (μeo) was suppressed from +2.1 to +0.88 × 10−4 cm2/V•s, and the relative standard deviation (RSD) of μeo was improved from 10.2 to 2.5% relative to the bare microchannel. Among several neutral polymers, poly(vinylalcohol) (PVA) and poly(dimethylacrylamide) coatings gave more suppressed and repeatable EOF with RSDs of less than 2.3%. The vacuum-drying method was also applicable to polyanions and polycations to provide accelerated and inversed EOF, respectively, with acceptable RSDs of less than 4.9%. In the microchip electrophoresis (MCE) analysis of bovine serum albumin (BSA) in the vacuum-dried and thermally-treated PVA coating channel, an almost symmetric peak of BSA was obtained, while in the native microchannel a significantly skewed peak was observed. The results demonstrated that the vacuum-dried polymer coatings were effective to control the EOF, and reduced the surface adsorption of proteins in MCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. R. Castro and A. Manz, J. Chromatogr. A, 2015, 1382, 66.

    Article  CAS  PubMed  Google Scholar 

  2. N. Nuchtavorna, W. Suntornsukc, S. M. Lunted, and L. Suntornsuk, J. Pharm. Biomed. Anal., in press, doi:10.1016/j.jpba.2015.03.002.

  3. M. C. Breadmore, J. Chromatogr. A, 2012, 1221, 42.

    Article  CAS  PubMed  Google Scholar 

  4. V. Dolnik and S. Liu, J. Sep. Sci., 2005, 28, 1994.

    Article  CAS  PubMed  Google Scholar 

  5. V. Dolnik, S. Liu, and S. Jovanovich, Electrophoresis, 2000, 21, 41.

    Article  CAS  PubMed  Google Scholar 

  6. J. Zhou, A. V. E. Ellis, and N. H. Voelckerm, Electrophoresis, 2010, 31, 2.

    Article  CAS  PubMed  Google Scholar 

  7. J. Liu and M. L. Lee, Electrophoresis, 2006, 27, 3533.

    Article  CAS  PubMed  Google Scholar 

  8. D. Belder and M. Ludwig, Electrophoresis, 2003, 24, 3595.

    Article  CAS  PubMed  Google Scholar 

  9. E. A. S. Doherty, R. J. Meagher, M. N. Albarghouthi, and A. E. Barron, Electrophoresis, 2003, 24, 34.

    Article  PubMed  Google Scholar 

  10. J. Horvath and V. Dolnik, Electrophoresis, 2001, 22, 644.

    Article  CAS  PubMed  Google Scholar 

  11. S. L. R. Barker, M. J. Tarlov, H. Canavan, J. J. Hickman, and L. E. Locascio, Anal. Chem., 2000, 72, 4899.

    Article  CAS  PubMed  Google Scholar 

  12. T. Kawai, K. Sueyoshi, F. Kitagawa, and K. Otsuka, Anal. Chem., 2010, 82, 6504.

    Article  CAS  PubMed  Google Scholar 

  13. D. Wu, Y. Luo, X. Zhou, Z. Dai, and B. Lin, Electrophoresis, 2005, 26, 211.

    Article  CAS  PubMed  Google Scholar 

  14. K. Otsuka, K. Sueyoshi, Y. Hori, and F. Kitagawa, Japanese Patent Application, 2014, 069677.

  15. K. Nii, K. Sueyoshi, K. Otsuka, and M. Takai, Microfluid. Nanofluid., 2013, 14, 951.

    Article  CAS  Google Scholar 

  16. K. Sueyoshi, Y. Hori, and K. Otsuka, Microfluid. Nanofluid., 2013, 14, 933.

    Article  CAS  Google Scholar 

  17. X. H. Huang, M. H. Gordon, and R. N. Zare, Anal. Chem., 1988, 60, 1837.

    Article  CAS  Google Scholar 

  18. J. L. Pittman, C. S. Henry, and S. D. Gilman, Anal. Chem., 2003, 75, 361.

    Article  CAS  PubMed  Google Scholar 

  19. I. Rodríguez and N. Chandrasekhar, Electrophoresis, 2005, 26, 1114.

    Article  PubMed  Google Scholar 

  20. J. Horvath and V. Dolnik, Electrophoresis, 2001, 22, 644.

    Article  CAS  PubMed  Google Scholar 

  21. J. A. Kim, J. Y. Lee, S. Seong, S. H. Cha, S. H. Lee, J. J. Kim, and T. H. Park, Biochem. Eng. J., 2006, 29, 91.

    Article  CAS  Google Scholar 

  22. D. P. Wu, B. X. Zhao, Z. P. Dai, J. H. Qin, and B. C. Lin, Lab Chip, 2006, 6, 942.

    Article  CAS  PubMed  Google Scholar 

  23. M. Gilges, M. H. Kleemiss, and G. Schomburg, Anal. Chem., 1994, 66, 2038.

    Article  CAS  Google Scholar 

  24. Y. Okamoto, F. Kitagawa, and K. Otsuka, Electrophoresis, 2006, 27, 1031.

    Article  CAS  PubMed  Google Scholar 

  25. Y. Ikada, H. Iwata, F. Horii, T. Matsunaga, M. Taniguchi, M. Suzuki, W. Taki, S. Yamagata, Y. Yonekawa, and H. Handa, Biomed. Mater. Res., 1981, 15, 697.

    Article  CAS  Google Scholar 

  26. F. B. Erim, A. Cifuentes, H. Poppe, and J. C. Kraak, J. Chromatogr. A, 1995, 708, 356.

    Article  Google Scholar 

  27. F. Kitagawa, M. Kamiya, Y. Okamoto, H. Taji, S. Onoue, Y. Tsuda, and K. Otsuka, Anal. Bioanal. Chem., 2006, 386, 594.

    Article  CAS  PubMed  Google Scholar 

  28. F. Kitagawa, T. Kawai, and K. Otsuka, Anal. Sci., 2013, 29, 1129.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumihiko Kitagawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitagawa, F., Nakagawara, S., Nukatsuka, I. et al. Simple and Rapid Immobilization of Coating Polymers on Poly(dimethyl siloxane)-glass Hybrid Microchips by a Vacuum-drying Method. ANAL. SCI. 31, 1171–1175 (2015). https://doi.org/10.2116/analsci.31.1171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.1171

Keywords

Navigation