Skip to main content
Log in

Real-time ESI-MS of Enzymatic Conversion: Impact of Organic Solvents and Multiplexing

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Different enzymatic assays were characterized systematically by real-time electrospray ionization mass spectrometry (ESI-MS) in the presence of organic solvents as well as in multiplex approaches and in a combination of both. Typically, biological enzymatic reactions are studied in aqueous solutions, since most enzymes show their full activity solely in aqueous solutions. However, in recent years, the use of organic solvents in combination with enzymatic reactions has gained increasing interest due to biotechnological advantages in chemical synthesis, development of online coupled setups screening for enzyme regulatory compounds, advantages regarding mass spectrometric detection and others. In the current study, the influence of several common organic solvents (methanol, ethanol, isopropanol, acetone, acetonitrile) on enzymatic activity (hen egg white lysozyme, chitinase, α-chymotrypsin, elastase from human neutrophils and porcine pancreas, acetylcholinesterase) was tested. Moreover, multiplexing is a promising approach enabling fast and cost-efficient screening methods, e.g. for determination of inhibitors in complex mixtures or in the field of biomedical research. Although in multiplexed setups the enzymatic activity may be affected by the presence of other substrates and/or enzymes, the expected advantages possibly will predominate. To investigate those effects, we measured multiple enzymatic assays simultaneously. For all conducted measurements, the conversion rate of the substrate(s) was calculated, which reflects the enzymatic activity. The results provide an overview about the susceptibility of the selected enzymes towards diverse factors and a reference point for many applications in analytical chemistry and biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Letzel, Anal. Bioanal. Chem., 2008, 390, 257.

    Article  CAS  PubMed  Google Scholar 

  2. A. R. de Boer, H. Lingeman, W. M. A. Niessen, and H. Irth, Trac-Trends Anal. Chem., 2007, 26, 867.

    Article  Google Scholar 

  3. K. D. Greis, Mass Spectrom. Rev., 2007, 26, 324.

    Article  CAS  PubMed  Google Scholar 

  4. A. Liesener and U. Karst, Anal. Bioanal. Chem., 2005, 382, 1451.

    Article  CAS  PubMed  Google Scholar 

  5. J. Grassmann, R. K. Scheerle, and T. Letzel, Anal. Bioanal. Chem., 2012, 2, 625.

    Article  Google Scholar 

  6. T. Letzel, E. Sahmel-Schneider, K. Skriver, T. Ohnuma, and T. Fukamizo, Carbohydr. Res., 2011, 346, 863.

    Article  CAS  PubMed  Google Scholar 

  7. N. Dennhart, T. Fukamizo, R. Brzezinski, M. E. Lacombe-Harvey, and T. Letzel, J. Biotechnol., 2008, 134, 253.

    Article  CAS  PubMed  Google Scholar 

  8. N. Dennhart, L. M. M. Weigang, M. Fujiwara, T. Fukamizo, K. Skriver, and T. Letzel, J. Biotechnol., 2009, 143, 274.

    Article  CAS  PubMed  Google Scholar 

  9. X. Ge, T. L. Sirich, M. K. Beyer, H. Desaire, and J. A. Leary, Anal. Chem., 2001, 73, 5078.

    Article  CAS  PubMed  Google Scholar 

  10. D. B. Northrop and F. B. Simpson, Bioorg. Med. Chem., 1997, 5, 641.

    Article  CAS  PubMed  Google Scholar 

  11. S. H. Krishna, Biotechnol. Adv., 2002, 20, 239.

    Article  PubMed  Google Scholar 

  12. A. M. Klibanov, Nature, 2001, 409, 241.

    Article  CAS  PubMed  Google Scholar 

  13. H. Ogino and H. Ishikawa, J. Biosci. Bioeng., 2001, 91, 109.

    Article  CAS  PubMed  Google Scholar 

  14. P. Kebarle and U. H. Verkerk, Mass Spectrom. Rev., 2009, 28, 898.

    Article  CAS  PubMed  Google Scholar 

  15. A. R. de Boer, T. Letzel, H. Lingeman, and H. Irth, Anal. Bioanal. Chem., 2005, 381, 647.

    Article  CAS  PubMed  Google Scholar 

  16. R. Scheerle, J. Grassmann, and T. Letzel, Anal. Methods, 2011, 3, 822.

    Article  CAS  Google Scholar 

  17. A. R. de Boer, B. Bruyneel, J. G. Krabbe, H. Lingeman, W. M. A. Niessen, and H. Irth, Lab Chip, 2005, 5, 1286.

    Article  PubMed  Google Scholar 

  18. M. N. Gupta, Eur. J. Biochem., 1992, 203, 25.

    Article  CAS  PubMed  Google Scholar 

  19. C. Hempen, A. Liesener, and U. Karst, Anal. Chim. Acta, 2005, 543, 137.

    Article  CAS  Google Scholar 

  20. S. A. Gerber, C. R. Scott, F. Turecek, and M. H. Gelb, J. Am. Chem. Soc., 1999, 121, 1102.

    Article  CAS  Google Scholar 

  21. A. Liesener and U. Karst, Analyst, 2005, 130, 850.

    Article  CAS  PubMed  Google Scholar 

  22. A. Liesener, A. M. Perchuc, R. Schoni, M. Wilmer, and U. Karst, Rapid Commun. Mass Spectrom., 2005, 19, 2923.

    Article  CAS  PubMed  Google Scholar 

  23. V. Dixit, N. Hariparsad, P. Desai, and J. D. Unadkat, Biopharm. Drug Dispos., 2007, 28, 257.

    Article  CAS  PubMed  Google Scholar 

  24. C. F. de Jong, R. J. E. Derks, B. Bruyneel, W. Niessen, and H. Irth, J. Chromatogr., A, 2006, 1112, 303.

    Article  PubMed  Google Scholar 

  25. J. Kool, M. Giera, H. Irth, and W. M. A. Niessen, Anal. Bioanal. Chem., 2011, 399, 2655.

    Article  CAS  PubMed  Google Scholar 

  26. T. Schenk, J. Breel, P. Koevoets, S. van den Berg, A. C. Hogenboom, H. Irth, U. R. Tjaden, and J. van der Greef, J. Biomol. Screen., 2003, 8, 421.

    Article  CAS  PubMed  Google Scholar 

  27. A. R. de Boer, T. Letzel, D. A. van Elswijk, H. Lingeman, W. M. A. Niessen, and H. Irth, Anal. Chem., 2004, 76, 3155.

    Article  PubMed  Google Scholar 

  28. A. R. de Boer, J. M. Alcaide-Hidalgo, J. G. Krabbe, J. Kolkman, C. N. V. Boas, W. M. A. Niessen, H. Lingeman, and H. Irth, Anal. Chem., 2005, 77, 7894.

    Article  PubMed  Google Scholar 

  29. T. Teutenberg, High-Temperature Liquid Chromatography—A User’s Guide for Method Development, 2010, Royal Society of Chemistry.

  30. N. Dennhart and T. Letzel, Anal. Bioanal. Chem., 2006, 386, 689.

    Article  CAS  PubMed  Google Scholar 

  31. L. G. Butler, Enzyme Microb. Technol., 1979, 1, 253.

    Article  CAS  Google Scholar 

  32. M. Samalikova and R. Grandori, J. Mass Spectrom., 2005, 40, 503.

    Article  CAS  PubMed  Google Scholar 

  33. R. Batra and M. N. Gupta, Biotechnol. Lett., 1994, 16, 1059.

    Article  CAS  Google Scholar 

  34. Y. L. Khmelnitsky, V. V. Mozhaev, A. B. Belova, M. V. Sergeeva, and K. Martinek, Eur. J. Biochem., 1991, 198, 31.

    Article  CAS  PubMed  Google Scholar 

  35. H. Ogino, Y. Gemba, Y. Yutori, N. Doukyu, K. Ishimi, and H. Ishikawa, Biotechnol. Prog., 2007, 23, 155.

    Article  CAS  PubMed  Google Scholar 

  36. I. K. Rhee, N. Appels, T. Luijendijk, H. Irth, and R. Verpoorte, Phytochem. Anal., 2003, 14, 145.

    Article  CAS  PubMed  Google Scholar 

  37. K. Ingkaninan, C. M. de Best, R. van der Heijden, A. J. P. Hofte, B. Karabatak, H. Irth, U. R. Tjaden, J. van der Greef, and R. Verpoorte, J. Chromatogr., A, 2000, 872, 61.

    Article  CAS  PubMed  Google Scholar 

  38. M. N. Gupta, R. Batra, R. Tyagi, and A. Sharma, Biotechnol. Prog., 1997, 13, 284.

    Article  CAS  Google Scholar 

  39. C. Laane, S. Boeren, K. Vos, and C. Veeger, Biotechnol. Bioeng., 1987, 30, 81.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Letzel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheerle, R.K., Grassmann, J. & Letzel, T. Real-time ESI-MS of Enzymatic Conversion: Impact of Organic Solvents and Multiplexing. ANAL. SCI. 28, 607–612 (2012). https://doi.org/10.2116/analsci.28.607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.28.607

Navigation