Skip to main content
Log in

Development of an Anion Probe: Detection of Sulfate Ion by Two-Photon Fluorescence of Gold Nanoparticles

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Anion-selective detection is demonstrated for sulfate ion in aqueous solutions by using two-photon excited fluorescence of gold nanoparticles (AuNPs) modified with a thiourea-based anion receptor, bis[2-(3-(4-nitrophenyl)thioureido)ethyl]-disulfide. The fluorescent intensity increased with the change of the sulfate concentration in the solution from 10–4 to 10–3 M. In comparison with an unadsorbed receptor molecule in bulk acetonitrile solution, the molecule on AuNPs in water showed improved affinity for sulfate ion. The controllability of the hydrophobicity around receptor molecules on AuNPs is considered a dominant contributing factor for improved sulfate affinity. This unique feature of the surface enables us to detect anionic species in an aqueous phase where a dye-type indicator has poor sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Pacifici, Early Hum. Dev., 2005, 81, 573.

    Article  CAS  PubMed  Google Scholar 

  2. M. E. Morris and G. Levy, Clin. Pharmacol. Ther., 1983, 33, 529.

    Article  CAS  PubMed  Google Scholar 

  3. H. Shimizu, D. Bolati, A. Adijiang, Y. Adelibieke, G. Muteliefu, A. Enomoto, Y. Higashiyama, Y. Higuchi, F. Nishijima, and T. Niwa, Am. J. Nephrol., 2011, 33, 319.

    Article  CAS  PubMed  Google Scholar 

  4. M. E. Morris and G. Levy, Anal. Biochem., 1988, 172, 16.

    Article  CAS  PubMed  Google Scholar 

  5. B. Buděšinský and L. Krumlová, Anal. Chim. Acta, 1967, 39, 375.

    Article  Google Scholar 

  6. T. Shioya, S. Nishizawa, and N. Teramae, J. Am. Chem. Soc., 1998, 120, 11534.

    Article  CAS  Google Scholar 

  7. H. Jeong, E. M. Choi, S. O. Kang, K. C. Nam, and S. Jeon, J. Electroanal. Chem., 2000, 485, 154.

    Article  CAS  Google Scholar 

  8. H. R. Seong, D.-S. Kim, S.-G. Kim, H.-J. Choi, and K. H. Ahn, Tetrahedron Lett., 2004, 45, 723.

    Article  CAS  Google Scholar 

  9. F.-Y. Wu, Z. Li, L. Guo, X. Wang, M.-H. Lin, Y.-F. Zhao, and Y.-B. Jiang, Org. Biomol. Chem., 2006, 4, 624.

    Article  CAS  PubMed  Google Scholar 

  10. P. Anzenbacher Jr., M. A. Palacios, K. Jursíková, and M. Marquez, Org. Lett., 2005, 7, 5027.

    Article  PubMed  Google Scholar 

  11. G. K. Darbha, A. K. Singh, U. S. Rai, E. Yu, H. Yu, and P. C. Ray, J. Am. Chem. Soc., 2008, 130, 8038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, Nano Lett., 2008, 8, 302.

    Article  CAS  PubMed  Google Scholar 

  13. B. Duncan, C. Kim, and V. M. Rotello, J. Controlled Release, 2010, 148, 122.

    Article  CAS  Google Scholar 

  14. S. Schlücker, M. Salehi, G. Bergner, M. Schütz, P. Ströbel, A. Marx, I. Petersen, B. Dietzek, and J. Popp, Anal. Chem., 2011, 83, 7081.

    Article  PubMed  Google Scholar 

  15. W. Eck, G. Craig, A. Sigdel, G. Ritter, L. T. Old, L. Tang, M. F. Brennan, P. J. Allen, and M. D. Mason, ACS Nano, 2008, 2, 2263.

    Article  CAS  PubMed  Google Scholar 

  16. C.-A. Lin, T.-Y. Yang, C. H. Lee, S. H. Huang, R. A. Sperling, M. Zanella, J. K. Li, J.-L. Shen, H.-H. Wang, H.-I. Yeh, W. J. Parak, and W. H. Chang, ACS Nano, 2009, 3, 395.

    Article  CAS  PubMed  Google Scholar 

  17. T. Hayashita, T. Onodera, R. Kato, S. Nishizawa, and N. Teramae, Chem. Commun., 2000, 755.

  18. L. H. Haber, S. J. J. Kwok, M. Semeraro, and K. B. Eisenthal, Chem. Phys. Lett., 2011, 507, 11.

    Article  CAS  Google Scholar 

  19. M. Lippitz, M. A. van Dijk, and M. Orrit, Nano Lett., 2005, 5, 799.

  20. G. Ramakrishna, O. Varnavski, J. Kim, D. Lee, and T. Goodson, J. Am. Chem. Soc., 2008, 130, 5032.

    Article  CAS  PubMed  Google Scholar 

  21. K. Boldt, S. Jander, K. Hoppe, and H. Weller, ACS Nano, 2011, 5, 8115.

    Article  CAS  PubMed  Google Scholar 

  22. A. Boulesbaa, A. Issac, D. Stockwell, Z. Huang, J. Huang, J. Guo, and T. Lian, J. Am. Chem. Soc., 2007, 129, 15132.

    Article  CAS  PubMed  Google Scholar 

  23. T. L. Jennings, M. P. Singh, and G. F. Strouse, J. Am. Chem. Soc., 2006, 128, 5462.

    Article  CAS  PubMed  Google Scholar 

  24. K.-Y. Pu, Z. Luo, K. Li, J. Xie, and B. Liu, J. Phys. Chem. C, 2011, 115, 13069.

    Article  CAS  Google Scholar 

  25. I. Gryczynski, J. Malicka, Y. Shen, Z. Gryczynski, and J. R. Lakowicz, J. Phys. Chem. B, 2002, 106, 2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Zhang, T. He, C. Wang, X. Zhang, and Y. Zeng, Opt. Laser Technol., 2011, 43, 974.

    Article  CAS  Google Scholar 

  27. S. Yajima, K. Tohda, P. Bühlmann, and Y. Umezawa, Anal. Chem., 1997, 69, 1919.

    Article  CAS  Google Scholar 

  28. C. J. Murphy, G. C. Lisensky, L. K. Leung, G. R. Kowach, and A. B. Ellis, J. Am. Chem. Soc., 1990, 112, 8344.

    Article  CAS  Google Scholar 

  29. S.-C. Cui, T. Tachikawa, M. Fujitsuka, and T. Majima, J. Phys. Chem. C, 2010, 114, 1217.

    Article  CAS  Google Scholar 

  30. J. Tien, A. Terfort, and G. M. Whitesides, Langmuir, 1997, 13, 5349.

    Article  CAS  Google Scholar 

  31. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, J. Am. Chem. Soc., 2007, 129, 13939.

    Article  CAS  PubMed  Google Scholar 

  32. M. R. Beversluis, A. Bouhelier, and L. Novotny, Phys. Rev. B, 2003, 68, 115433.

    Article  Google Scholar 

  33. G. T. Boyd, Z. H. Yu, and Y. R. Shen, Phys. Rev. B, 1986, 33, 7923.

    Article  CAS  Google Scholar 

  34. O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, III, J. Phys. Chem. B, 2003, 107, 3101.

    Article  CAS  Google Scholar 

  35. K. Imura, T. Nagahara, and H. Okamoto, J. Phys. Chem. B, 2005, 109, 13214.

    Article  CAS  PubMed  Google Scholar 

  36. C. Jiang, Z. Guan, S. Y. R. Lim, L. Polavarapu, and Q.-H. Xu, Nanoscale, 2011, 3, 3316.

    Article  CAS  PubMed  Google Scholar 

  37. A. Kolics and A. Wieckowski, J. Phys. Chem. B, 2001, 105, 2588.

    Article  CAS  Google Scholar 

  38. B. Damaskin, A. Frumkin, and A. Chizhov, J. Electroanal. Chem., 1970, 28, 93.

    Article  CAS  Google Scholar 

  39. Z. Szklarska-Smialowska and G. Wieczorek, Corros. Sci., 1971, 11, 843.

    Article  CAS  Google Scholar 

  40. R. V. Chamberlain II, K. Slowinska, and M. Majda, Langmuir, 2000, 16, 1388.

    Article  Google Scholar 

  41. P. A. Mosier-Boss and S. H. Lieberman, Langmuir, 2003, 19, 6826.

    Article  CAS  Google Scholar 

  42. P. A. Mosier-Boss and S. H. Lieberman, Spectrochim. Acta, Part A, 2005, 61, 845.

    Article  CAS  Google Scholar 

  43. T. C. Preston, M. Nuruzzaman, N. D. Jones, and S. Mittler, J. Phys. Chem. C, 2009, 113, 14236.

    Article  CAS  Google Scholar 

  44. R. Kato, S. Nishizawa, T. Hayashita, and N. Teramae, Tetrahedron Lett., 2001, 42, 5053.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Harata.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, K., Ishioka, T. & Harata, A. Development of an Anion Probe: Detection of Sulfate Ion by Two-Photon Fluorescence of Gold Nanoparticles. ANAL. SCI. 28, 1139–1144 (2012). https://doi.org/10.2116/analsci.28.1139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.28.1139

Navigation