Skip to main content
Log in

Rapid and Precise Coulometric Determination and Separation of Redox Inert Ions Based on Electrolysis for Ion Transfer at the Aqueous|Organic Solution Interface

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Flow systems for precise and accurate coulometric determinations of ions that were developed on the basis of electrolytic ion transfer at the aqueous|organic solution (W | O) interface are reviewed. The electrolysis cell in the system is composed of a porous poly(tetrafluoroethylene) tube (1.0 mm inner diameter), a metal wire (0.8 mm diameter) inserted into the tube, O into which the tube is immersed, a reference electrode in O and a platinum wire counter electrode in O. The electrolysis is carried out by forcing W containing a species of interest to flow through the narrow gap between the tube and the metal wire. The coulometric determination can be performed with an efficiency of more than 99% and a precision of better than 0.2% based on the ion transfer under an optimum condition, even if the ion is redox inert such as Na+, K+, Mg2+, Ca2+, ClO4, picrate or alkylsulfonates. The system can be applied to selective electrolytic solvent extraction of ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

6 References

  1. L. Szebelledy and Z. Somogyi, Z Anal. Chem., 1938, 112, 313.

    Article  CAS  Google Scholar 

  2. J. J. Lingane, J. Am. Chem. Soc, 1945, 67, 1916.

    Article  CAS  Google Scholar 

  3. P. Delahay, “New Instrumental Methods in Electrochemistry”, 1954, John Wiley and Sons, New York, 267.

    Google Scholar 

  4. A. J. Bard and K. S. V. Santhanam, “Electroanalytical Chemistry”, ed. A. J. Bard, 1970, Vol. 4, Marcel Dekker, New York, 215.

  5. D. T. Sawyer and J. L. Roberts, Jr., “Experimental Electrochemistry for Chemists”, 1974, John Wiley and Sons, New York, 419.

    Google Scholar 

  6. S. Kihara, Z. Yoshida, H. Aoyagi, K. Maeda, O. Shirai, Y Kitatsuji, and Y Yoshida, Pure Appl. Chem., 1999, 71, 1771.

    Article  CAS  Google Scholar 

  7. A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications”, 2nd ed., 2001, John Wiley and Sons, New York, 417.

  8. Y Kitatsuji, Z. Yoshida, H. Kudo, and S. Kihara, J. Electroanal. Chem., 2002, 520, 133.

    Article  CAS  Google Scholar 

  9. S. Sawada, M. Taguma, T. Kimoto, H. Hotta, and T. Osakai, Anal. Chem., 2002, 74, 1177.

    Article  CAS  Google Scholar 

  10. A. Yoshizumi, A. Uehara, M. Kasuno, A. Kitatsuji, Z. Yoshida, and S. Kihara, J. Electroanal. Chem., 2005, 581, 275.

    Article  CAS  Google Scholar 

  11. T. Okugaki, Y Kitatsuji, M. Kasuno, A. Yoshizumi, H. Kubota, Y Shibafuji, K. Maeda, Z. Yoshida, and S. Kihara, J. Electroanal. Chem., 2009, 629, 50.

    Article  CAS  Google Scholar 

  12. M. Kasuno, Y Kakitani, Y Shibafuji, T. Okugaki, K. Maeda, T. Matsushita, and S. Kihara, Electroanalysis, 2009, 21, 2022.

    Article  CAS  Google Scholar 

  13. E. Gohara and T. Osakai, Anal. Sci., 2010, 26, 375.

    Article  CAS  Google Scholar 

  14. E. Grygolowicz-Pawlak and E. Bakker, Anal. Chem., 2010, 82, 4537.

    Article  CAS  Google Scholar 

  15. M. Kasuno, K. Fujimoto, Y Kakitani, T. Matsushita, and S. Kihara, J. Electroanal. Chem., in press.

  16. H. H. J. Girault and D. J. Schiffrin, “Electroanalytical Chemistry”, ed. A. J. Bard, 1989, Vol. 15, Marcel Dekker, New York, 1.

  17. A. G. Volkov and D. W Deamer (ed.), “Liquid-Liquid Interfaces”, 1996, Theory and Methods, CRC Press, Boca Raton.

  18. A. G. Volkov (ed.), “Liquid Interfaces in Chemical, Biological, and Pharmaceutical Applications”, 2001, Marcel Dekker, New York.

  19. D. T. Sawyer and J. L. Roberts, Jr., “Experimental Electrochemistry for Chemists”, 1974, John Wiley and Sons, New York, 149.

    Google Scholar 

  20. S. Kihara and Z. Yoshida, Talanta, 1984, 31, 789.

    Article  CAS  Google Scholar 

  21. M. Suzuki, M. Matsui, and S. Kihara, J. Electroanal. Chem., 1997, 420, 119.

    Article  CAS  Google Scholar 

  22. Y Yoshida, Z. Yoshida, H. Aoyagi, Y Kitatsuji, A. Uehara, and S. Kihara, Anal. Chim. Acta, 2002, 452, 149.

    Article  CAS  Google Scholar 

  23. A. J. Parker, Chem. Rev., 1969, 69, 1.

    Article  CAS  Google Scholar 

  24. Y Yoshida, M. Matsui, O. Shirai, K. Maeda, and S. Kihara, Anal. Chim. Acta, 1998, 373, 213.

    Article  CAS  Google Scholar 

  25. M. Kasuno, A. Uehara, N. Ichieda, T. Kitano, and S. Kihara, J. Electroanal. Chem., 2005, 579, 223.

    Article  CAS  Google Scholar 

  26. Z. Samec and P. Papoff, Anal. Chem., 1990, 62, 1010.

    Article  CAS  Google Scholar 

  27. T. Fujinaga and S. Kihara, CRC Crit. Rev. Anal. Chem., 1977, 6, 223.

    Article  CAS  Google Scholar 

  28. W.-R. Külpmann, P. Lehmann, and H.-K. Strummvoll, “Electrolytes, Acid-Base Balance and Blood Gases: Clinical Aspects and Laboratory ”, 2007, 2nd enlarged and rev. ed., Springer, Wien.

  29. Q. J. Wan, P. Kubáñ, J. Tanyanyiwa, A. Rainelli, and P. C. Hauser, Anal. Chim. Acta, 2004, 525, 11.

    Article  CAS  Google Scholar 

  30. V Rumenjak, S. Milardovi, I. Kruhak, and B. S. Grabaric, Clin. Chim. Acta, 2003, 335, 75.

    Article  CAS  Google Scholar 

  31. L. R. Morss, N. M. Edelstein, and J. Fuger (ed.), “The Chemistry of the Actinide and Transactinide Elements”, 3rd ed., 2006, Chaps. 6 and 7, Springer, Netherlands.

  32. K. Motojima, T. Yamamoto, and Y Kato, Bunseki Kagaku, 1969, 18, 208.

    Article  CAS  Google Scholar 

  33. T. Y Toribara, D. A. Morken, and C. Predmore, Talanta, 1963, 10, 205.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sorin Kihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kihara, S., Kasuno, M. Rapid and Precise Coulometric Determination and Separation of Redox Inert Ions Based on Electrolysis for Ion Transfer at the Aqueous|Organic Solution Interface. ANAL. SCI. 27, 1–11 (2011). https://doi.org/10.2116/analsci.27.1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.27.1

Navigation