Skip to main content
Log in

Electrochemical Measurement of Co-Ion Diffusion Coefficient in Ion-Exchange Membranes

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The development of experimental methods for rapid evaluation of electroactive components’ crossover parameters in electrolyte solutions separated by membrane is an actual problem in the development of membrane electrode assemblies of redox flow batteries and other chemical power sources. A novel method has been proposed which is based on direct measurement of the electroactive component diffusion flux density through membrane under chronoamperometric regime after applying a potential step of selected amplitude. To this purpose, the membrane under study is pressed up toward the surface of the working electrode with the use of an originally designed device. By combination of the expressions for the diffusion flux through the membrane under steady-state and non-steady-state conditions, relations are derived that allow determining the diffusion coefficient of the studied component inside the membrane and its distribution constant at the membrane/solution interface by using experimental data of the chronoamperometric measurements. The proposed method is applied to estimate the parameters for bromide-anion transport through sulfonic cation-exchange membrane in contact with sulfuric acid solution added with hydrobromic acid for a set of the latter’s concentrations. For the HBr concentration range from 0.125 to 0.75 M, the values of the diffusion coefficient of the bromide-anion inside membrane and of its distribution constant at the membrane/solution interface are obtained: (3.3 ± 0.2) × 10–6 cm2/s and 0.18 ± 0.2, respectively. They well agree with the results obtained by means of longer and more laborious measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Perry, M.L., Saraidaridis, J.D., and Darling, R.M., Crossover mitigation strategies for redox-flow batteries, Current Opinion Electrochem., 2020, vol. 21, p. 311.

    Article  CAS  Google Scholar 

  2. Saadi, K., Nanikashvili, P., Tatus-Portnoy, Z., Hardisty, S., Shokhen, V., Zysler, M., and Zitoun, D., Crossover-tolerant coated platinum catalysts in hydrogen/bromine redox flow battery, J. Power Sources, 2019, vol. 422, p. 84.

    Article  CAS  Google Scholar 

  3. Darling, R.M., Weber, A.Z., Tucker, M.C., and Perry, M.L., The influence of electric field on crossover in redox-flow batteries, J. Electrochem. Soc., 2015, vol. 163, no. 1, p. A5014.

    Article  Google Scholar 

  4. Oh, K., Weber, A.Z., and Ju, H., Study of bromine species crossover in H2/Br2 redox flow batteries, Internat. J. Hydrogen Energy, 2017, vol. 42, no. 6, p. 3753.

    Article  CAS  Google Scholar 

  5. Shi, Y., Wei, Z., Liu, H., and Zhao, J., Dynamic modeling of long-term operations of vanadium/air redox flow battery with different membranes, J. Energy Storage, 2022, vol. 50, p. 104171.

    Article  Google Scholar 

  6. Barton, J.L. and Brushett, F.R., A one-dimensional stack model for redox flow battery analysis and operation, Batteries, 2019, vol. 5, no. 1, p. 25.

    Article  CAS  Google Scholar 

  7. Cho, K.T., Albertus, P., Battaglia, V., Kojic, A., Srinivasan, V., and Weber, A.Z., Optimization and analysis of high-power hydrogen/bromine-flow batteries for grid-scale energy storage, Energy Technol., 2013, vol. 1, no. 10, p. 596.

    Article  Google Scholar 

  8. Maurya, S., Shin, S.H., Lee, J.Y., Kim, Y., and Moon, S.H., Amphoteric nanoporous polybenzimidazole membrane with extremely low crossover for a vanadium redox flow battery, RSC Advances, 2016, vol. 6, no. 7, p. 5198.

    Article  CAS  Google Scholar 

  9. Peng, S., Zhang, L., Zhang, C., Ding, Y., Guo, X., He, G., and Yu, G., Gradient-Distributed Metal–Organic Framework–Based Porous Membranes for Nonaqueous Redox Flow Batteries, Advanced Energy Mater., 2018, vol. 8, no. 33, p.1802533.

    Article  Google Scholar 

  10. Gvozdik, N.A., Sanginov, E.A., Abunaeva, L.Z., Konev, D.V., Usenko, A.A., Novikova, K.S., Stevenson, K.J., and Dobrovolsky, Y.A., A Composite Membrane Based on Sulfonated Polystyrene Implanted in a Stretched PTFE Film for Vanadium Flow Batteries, ChemPlusChem, 2020, vol. 85, no. 12, p. 2580.

    Article  CAS  Google Scholar 

  11. Leung, P.K., Xu, Q., Zhao, T.S., Zeng, L., and Zhang, C., Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries, Electrochim. Acta, 2013, vol. 105, p. 584.

    Article  CAS  Google Scholar 

  12. Bukola, S., Li, Z., Zack, J., Antunes, C., Korzeniewski, C., Teeter, G., and Pivovar, B., Single-layer graphene as a highly selective barrier for vanadium crossover with high proton selectivity, J. Energy Chem., 2021, vol. 59, p. 419.

    Article  CAS  Google Scholar 

  13. Huang, S.L., Yu, H.F., and Lin, Y.S., Modification of Nafion® membrane via a sol-gel route for vanadium redox flow energy storage battery applications, J. Chem., 2017, vol. 2017, p. 4590952.

    Article  Google Scholar 

  14. Will, F.G., Bromine Diffusion Through Nafion® Perfluorinated Ion Exchange Membranes, J. Electrochem. Soc., 1979, vol. 126, no. 1, p. 36.

    Article  CAS  Google Scholar 

  15. Park, J.W., Wycisk, R., and Pintauro, P.N., Nafion/PVDF nanofiber composite membranes for regenerative hydrogen/bromine fuel cells, J. Membrane Sci., 2015, vol. 490, p. 103.

    Article  CAS  Google Scholar 

  16. Heintz, A. and Illenberger, C., Diffusion coefficients of Br2 in cation exchange membranes, J. Membrane Sci., 1996, vol. 113, no. 2, p. 175.

    Article  CAS  Google Scholar 

  17. Yeo, R. and McBreen, J., Transport properties of Nafion membranes in electrochemically regenerative hydrogen/halogen cells, J. Electrochem. Soc, 1979, vol. 126, no. 10, p. 1682.

    Article  CAS  Google Scholar 

  18. Baldwin, R.S. Electrochemical performance and transport properties of a Nafion membrane in a hydrogen–bromine cell environment, Technical Memorandum NASA-TM-89862 (USA). 1987.

  19. Kimble, M. and White, R., Estimation of the diffusion coefficient and solubility for a gas diffusing through a membrane, J. Electrochem. Soc., 1990, vol. 137, no. 8, p. 2510.

    Article  CAS  Google Scholar 

  20. Haug, A.T. and White, R.E., Oxygen diffusion coefficient and solubility in a new proton exchange membrane, J. Electrochem. Soc., 2000, vol. 147, no. 3, p. 980.

    Article  CAS  Google Scholar 

  21. White, H.S., Leddy, J., and Bard, A.J., Polymer films on electrodes. 8. Investigation of charge-transport mechanisms in Nafion polymer modified electrodes, J. Amer. Chem. Soc., 1982, vol. 104, no. 18, p. 4811.

    Article  CAS  Google Scholar 

  22. Mello, R.M.Q. and Ticianelli, E.A., Kinetic study of the hydrogen oxidation reaction on platinum and Nafion® covered platinum electrodes, Electrochim. Acta, 1997, vol. 42, no. 6, p. 1031.

    Article  CAS  Google Scholar 

  23. Ayad, A., Naimi, Y., Bouet, J., and Fauvarque, J.F., Oxygen reduction on platinum electrode coated with Nafion®, J. Power Sources, 2004, vol. 130, nos. 1–2, p. 50.

    Article  CAS  Google Scholar 

  24. Brunetti, B., Desimoni, E., and Casati, P., Determination of Caffeine at a Nafion-Covered Glassy Carbon Electrode, Electroanalysis, 2007, vol. 19, nos. 2–3, p. 385.

    Article  CAS  Google Scholar 

  25. Sadok, I., Tyszczuk-Rotko, K., and Nosal-Wiercinska, A., Bismuth particles Nafion covered boron-doped diamond electrode for simultaneous and individual voltammetric assays of paracetamol and caffeine, Sens. Actuators B, 2016, vol. 235, p. 263.

    Article  CAS  Google Scholar 

  26. Karyakin, A.A., Kotel’nikova, E.A., Lukachova, L.V., Karyakina, E.E., and Wang, J., Optimal environment for glucose oxidase in perfluorosulfonated ionomer membranes: improvement of first-generation biosensors, Analyt. Chem., 2002, vol. 74, no. 7, p. 1597.

    Article  CAS  Google Scholar 

  27. Han, J.H., Kim, S., Choi, J., Kang, S., Pak, Y. K., and Pak, J.J., Development of multi-well-based electrochemical dissolved oxygen sensor array, Sens. Actuators B: Chem., 2020, vol. 306, p. 127465.

    Article  CAS  Google Scholar 

  28. Zhang, X., Real time and in vivo monitoring of nitric oxide by electrochemical sensors—from dream to reality, Front Biosci., 2004, vol. 9, no. 17, p. 3434.

    Article  CAS  Google Scholar 

  29. Lawrence, N.S., Jiang, L., Jones, T.G., and Compton, R.G., A thin-layer amperometric sensor for hydrogen sulfide: the use of microelectrodes to achieve a membrane-independent response for Clark-type sensors, Analyt. Chem., 2003, vol. 75, no. 10, p. 2499.

    Article  CAS  Google Scholar 

  30. Cho, K.T., Tucker, M.C., Ding, M., Ridgway, P., Battaglia, V.S., Srinivasan, V., and Weber, A.Z., Cyclic Performance Analysis of Hydrogen/Bromine Flow Batteries for Grid-Scale Energy Storage, ChemPlusChem, 2015, vol. 80, no. 2, p. 402.

    Article  CAS  Google Scholar 

  31. Li, G., Jia, Y., Zhang, S., Li, X., Li, J., and Li, L., The crossover behavior of bromine species in the metal-free flow battery, J. Appl. Electrochem., 2017, vol. 47, no. 2, p. 261.

    Article  CAS  Google Scholar 

  32. Lin, G., Chong, P.Y., Yarlagadda, V., Nguyen, T.V., Wycisk, R.J., Pintauro, P.N., Bates, M., Mukerjee, S., Tucker, M.C., and Weber, A.Z., Advanced Hydrogen-Bromine Flow Batteries with Improved Efficiency, Durability and Cost., J. Electrochem. Soc., 2016, vol. 163, no. 1, p. A5049.

    Article  CAS  Google Scholar 

  33. Park, J.W., Wycisk, R., Pintauro, P.N., Yarlagadda, V., and Nguyen, T.V., Electrospun Nafion®/Polyphenylsulfone Composite Membranes for Regenerative Hydrogen Bromine Fuel Cells, Materials, 2016, vol. 9, no. 3, p. 143.

    Article  Google Scholar 

  34. Huskinson, B. and Aziz, M.J., Performance Model of a Regenerative Hydrogen Bromine Fuel Cell for Grid-Scale Energy Storage, Energy Sci. Technol., 2013, vol. 5, no. 1, p. 1.

    CAS  Google Scholar 

  35. Fritts, S.D. and Savinell, R.F., Simulation studies on the performance of the hydrogen electrode bonded to proton exchange membranes in the hydrogen-bromine fuel cell, J. Power Sources, 1989, vol. 28, no. 3, p. 301.

    Article  CAS  Google Scholar 

  36. Modestov, A.D., Konev, D.V., Antipov, A.E., and Vorotyntsev, M.A., Hydrogen-bromate flow battery: can one reach both high bromate utilization and specific power? J. Solid State Electrochem., 2019, vol. 23, no. 11, p. 3075.

    Article  CAS  Google Scholar 

  37. Modestov, A.D., Konev, D.V., Tripachev, O.V., Antipov, A.E., Tolmachev, Y.V., and Vorotyntsev, M.A., A Hydrogen-Bromate Flow Battery for Air-Deficient Environments, Energy Technol., 2018, vol. 6, no. 2, p. 242.

    Article  CAS  Google Scholar 

  38. Petrov, M.M., Konev, D.V., Kuznetsov, V.V., Antipov, A.E., Glazkov, A.T., and Vorotyntsev, M.A., Electrochemically driven evolution of Br-containing aqueous solution composition, J. Electroanal. Chem., 2019, vol. 836, p. 125.

    Article  CAS  Google Scholar 

  39. Jiang, B., Yu, L., Wu, L., Mu, D., Liu, L., Xi, J., and Qiu, X., Insights into the impact of the nafion membrane pretreatment process on vanadium flow battery performance, ACS Appl. Mater. Interfaces, 2016, vol. 8, no. 19, p. 12228.

    Article  CAS  Google Scholar 

  40. Bard, A.J. and Faulkner, L.R., Electrochemical Methods, Fundamentals and Applications (2nd ed.), New York: Wiley, 2001.

    Google Scholar 

  41. Gómez-Gil, J.M., Laborda, E., and Molina, A., General explicit mathematical solution for the voltammetry of nonunity stoichiometry electrode reactions: diagnosis criteria in cyclic voltammetry, Analyt. Chem., 2020, vol. 92, no. 5, p. 3728.

    Article  Google Scholar 

  42. Park, J.W., Wycisk, R., and Pintauro, P.N., Membranes for a regenerative H2/Br2 fuel cell, ECS Transactions, 2013, vol. 50, no. 2, p. 1217.

    Article  Google Scholar 

Download references

Funding

The reported study was funded by the Russian Science Foundation according to the research project no. 20-63-46041.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Konev or M. A. Vorotyntsev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Yu. Pleskov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konev, D.V., Istakova, O.I., Kartashova, N.V. et al. Electrochemical Measurement of Co-Ion Diffusion Coefficient in Ion-Exchange Membranes. Russ J Electrochem 58, 1103–1113 (2022). https://doi.org/10.1134/S1023193522120035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193522120035

Keywords:

Navigation