Skip to main content
Log in

Flow Velocity Detector in a Microchip Based on a Photothermally Induced Grating

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A new photothermal technique was developed for measuring the flow velocity and making solute concentration measurements in a microchip by using the same optical and instrumental setup. Collinear pump and probe light were irradiated onto a microchip surface on which a grating pattern was fabricated. The pump light induced a temperature change with the grating pattern in a microchannel, and a refractive index change due to a subsequent temperature rise was monitored by a heterodyned diffraction signal of the probe light. The flow velocity and concentration were obtained by monitoring the motion and intensity change of the thermally induced grating, respectively. The dynamic range of the flow velocity measurement was 0.17 - 670 mm/s, which is sufficient for covering most chemical applications of a microchip. The detection limit of the concentration measurement was 2 × 10-6 M for a rhodamine B solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proceedings of Micro Total Analysis Systems 2005, ed. K. F. Jensen, J. Han, D. J. Harrison, and J. Voldman, 2005, Transducer Research Foundation, Boston.

  2. Proceedings of Micro Total Analysis Systems 2004, ed. T. Laurell, J. Nilsson, K. Jenson, D. J. Harrison, and J. P. Kutter, 2004, The Royal Society of Chemistry, Molmo.

  3. T. Vilkner, D. Janasek, and A. Manz, Anal. Chem., 2004, 76, 3373.

    Article  CAS  Google Scholar 

  4. J. P. Kutter, Trends Anal. Chem., 2000, 19, 352.

    Article  CAS  Google Scholar 

  5. A. Manz and H. Becker (ed.), “Microsystem Technology in Chemistry and Life Science”, 1998, Springer-Verlag, Berlin.

    Google Scholar 

  6. B. H. Weigl, and P. Yager, Science, 1999, 283, 346.

    Article  Google Scholar 

  7. T. Vilkner, D. Janasek, and A. Manz, Anal. Chem., 2004, 76, 3373.

    Article  CAS  Google Scholar 

  8. N. T. Nguyen and S. T. Wereley (ed.), “Fundamentals and Applications of Microfluidics”, 2002, Artech House, Boston.

    Google Scholar 

  9. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, Experiments in Fluidics, 1998, 2(4), 316.

    Article  Google Scholar 

  10. Y. Sugii, K. Okamoto, A. Hibara, M. Tokeshi, and T. Kitamori, J. Visualization, 2005, 8(2), 117.

    Article  Google Scholar 

  11. N. J. Dovichi and J. M. Harris, Anal. Chem., 1981, 53, 689.

    Article  CAS  Google Scholar 

  12. W. A. Weimer and N. J. Dovichi, Appl. Optics, 1985, 24, 2981.

    Article  CAS  Google Scholar 

  13. S. L. Nickolaisen and S. E. Bialkowski, Anal. Chem., 1986, 58, 215.

    Article  CAS  Google Scholar 

  14. H. Sontag and A. C. Tam, Opt. Lett., 1985, 10, 436.

    Article  CAS  Google Scholar 

  15. S. Chanlon and J. Georges, Spectrochim. Acta, Part A, 2002, 58, 1607.

    Article  CAS  Google Scholar 

  16. M. A. Hayes and J. C. StClaire, Anal. Chem., 2000, 72, 4720.

    Article  Google Scholar 

  17. K. A. Ghaleb and J. Georges, Appl. Spectrosc., 2004, 58, 1116.

    Article  CAS  Google Scholar 

  18. B. Hemmerling, D. N. Kozlov, and A. Stanpanoni-Panariello, Opt. Lett., 2000, 25, 1340.

    Article  CAS  Google Scholar 

  19. S. Chanlon and J. Georges, Spectrochim. Acta, Part A, 2002, 58, 1607.

    Article  CAS  Google Scholar 

  20. T. Kitamori, M. Tokeshi, A. Hibara, and K. Sato, Anal. Chem., 2004, 76(3), 52A.

    Article  CAS  Google Scholar 

  21. K. Katayama, M. Yamaguchi, and T. Sawada, Appl. Phys. Lett., 2003, 82(17), 2775.

    Article  Google Scholar 

  22. M. Yamaguchi, K. Katayama, and T. Sawada, Chem. Phys. Lett., 2003, 377, 589.

    Article  CAS  Google Scholar 

  23. K. Okamoto, Z. Zhang, A. Scherer, and D. T. Wei, Appl. Phys. Lett., 2004, 85(21), 4842.

    Article  Google Scholar 

  24. K. Okamoto, Z. Zhang, D. T. Wei, and A. Scherer, Thin Solid Films, 2004, 469-470, 420.

    Article  CAS  Google Scholar 

  25. A. Hibara, M. Tokeshi, K. Uchiyama, H. Hisamamoto, and T. Kitamori, Anal. Sci., 2001, 17, 89.

    Article  CAS  Google Scholar 

  26. M. Tokeshi, M. Uchida, A. Hibara, T. Sawada, and T. Kitamori, Anal. Chem., 2001, 73(9), 2112.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Kitamori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katayama, K., Kikutani, Y. & Kitamori, T. Flow Velocity Detector in a Microchip Based on a Photothermally Induced Grating. ANAL. SCI. 23, 639–643 (2007). https://doi.org/10.2116/analsci.23.639

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.23.639

Navigation