Skip to main content
Log in

Sensitive optofluidic flow rate sensor based on laser heating and microring resonator

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

We demonstrate an optofluidic flow rate sensor based on the heat transfer effect in a microfluidic channel for the lab-on-a-chip applications. By employing an optofluidic ring resonator (OFRR), the wavelength shift of the resonant dip of the whispering gallery mode is detected as a function of the flow rate when the flow is heated by a 1480-nm laser. A measurement range of 2–100 μL/min, a minimum detectable change of 30 nL/min, and an accuracy of 5.2 % for the flow rate detection are achieved. Experimental results indicate that the OFRR flow rate sensor has good repeatability, and the inverse sensitivity is beneficial for detecting the low flow rate with high sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bowen AL, Martin RS (2010) Integration of on-chip peristaltic pumps and injection valves with microchip electrophoresis and electrochemical detection. Electrophoresis 31:2534–2540

    Article  Google Scholar 

  • Chen R, Dong PF, Xu JH, Wang YD, Luo GS (2012) Controllable microfluidic production of gas-in-oil-in-water emulsions for hollow microspheres with thin polymer shells. Lab Chip 12:3858–3860

    Article  Google Scholar 

  • Cheri MS, Latifi H, Sadeghi J, Moghaddam MS, Shahraki H, Hajghassem H (2014) Real-time measurement of flow rate in microfluidic devices using a cantilever-based optofluidic sensor. Analyst 139:431–438

    Article  Google Scholar 

  • Esquivel JP, Castellarnau M, Senn T, Löchel B, Samitier J, Sabaté N (2012) Fuel cell-powered microfluidic platform for lab-on-a-chip applications. Lab Chip 12:74–79

    Article  Google Scholar 

  • Fan X, White IM (2011) Optofluidic microsystems for chemical and biological analysis. Nat Photon 5:591–597

    Article  Google Scholar 

  • Fan X, Yun SH (2014) The potential of optofluidic biolasers. Nat Methods 11:141–147

    Article  Google Scholar 

  • Fan X, White IM, Zhu H, Suter JD, Oveys H (2007) Overview of novel integrated optical ring resonator bio/chemical sensors. Proc SPIE 6452:64520M

    Article  Google Scholar 

  • Foreman MR, Swaim JD, Vollmer F (2015) Whispering gallery mode sensors. Adv Opt Photon 7:168–240

    Article  Google Scholar 

  • Garza-Garcia LD, Garcia-Lopez E, Camacho-Leon S, del Refugio Rocha-Pizaña M, López-Pacheco F, López-Meza J, Araiz-Hernandez D, Tapia-Mejia EJ, Trujillo-de Santiago G, Rodriguez-Gonzalez CA, Alvarez MM (2014) Continuous flow micro-bioreactors for the production of biopharmaceuticals: the effect of geometry, surface texture, and flow rate. Lab Chip 14:1320–1329

    Article  Google Scholar 

  • Gervinskas AS, Ghanbari M, Agudelo CG, Packirisamy M, Bhat RB, Geitmann A (2013) PDMS microcantilever-based flow sensor integration for lab-on-a-chip. IEEE Sens J 13:601–609

    Article  Google Scholar 

  • Gorodetsky ML, Ilchenko VS (1999) Optical microsphere resonators: optimal coupling to high-Q-whispering-gallery modes. J Opt Soc Am B 16:147–154

    Article  Google Scholar 

  • Hassan U, Watkins NN, Edwards C, Bashir R (2014) Flow metering characterization within an electrical cell counting microfluidic device. Lab Chip 14:1469–1476

    Article  Google Scholar 

  • He XH, Wang W, Deng K, Xie R, Ju XJ, Liu Z, Chu LY (2015) Microfluidic fabrication of chitosan microfibers with controllable internals from tubular to peapod-like structures. RSC Adv 5:928–936

    Article  Google Scholar 

  • Keyon ASA, Guijt RM, Bolch CJ, Breadmore MC (2014) Droplet microfluidics for postcolumn reactions in capillary electrophoresis. Anal Chem 86:11811–11818

    Article  Google Scholar 

  • Kim KH, Fan X (2014) Surface sensitive microfluidic optomechanical ring resonator sensors. Appl Phys Lett 105:191101

    Article  Google Scholar 

  • Knight JC, Cheung G, Jacques F, Birks TA (1997) Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt Lett 22:1129–1131

    Article  Google Scholar 

  • König J, Voigt A, Büttner L, Czarske J (2010) Precise micro flow rate measurements by a laser Doppler velocity profile sensor with time division multiplexing. Meas Sci Technol 21:074005

    Article  Google Scholar 

  • Korczyk PM, Cybulski O, Makulska S, Garstecki P (2011) Effects of unsteadiness of the rates of flow on the dynamics of formation of droplets in microfluidic systems. Lab Chip 11:173–175

    Article  Google Scholar 

  • Li H, Fan X (2010) Characterization of sensing capability of optofluidic ring resonator biosensors. Appl Phys Lett 97:011105

    Article  Google Scholar 

  • Li Z, Mak SY, Sauret A, Shum HC (2014) Syringe-pump-induced fluctuation in all-aqueous microfluidic system implications for flow rate accuracy. Lab Chip 14:744–749

    Article  Google Scholar 

  • Lien V, Vollmer F (2007) Microfluidic flow rate detection based on integrated optical fiber cantilever. Lab Chip 7:1352–1356

    Article  Google Scholar 

  • Liu Y, Shi L, Xu XB, Zhao P, Wang ZQ, Pu SL, Zhang XL (2014a) All-optical tuning of a magnetic-fluid-filled optofluidic ring resonator. Lab Chip 14:3004–3010

    Article  Google Scholar 

  • Liu Z, Tse MV, Zhang AP, Tam HY (2014b) Integrated microfluidic flowmeter based on a micro-FBG inscribed in Co2+-doped optical fiber. Opt Lett 39:5877–5880

    Article  Google Scholar 

  • Marimuthu M, Kim S (2013) Pumpless steady-flow microfluidic chip for cell culture. Anal Biochem 437:161–163

    Article  Google Scholar 

  • Nezhad AS, Ghanbari M, Agudelo CG, Packirisamy M, Bhat RB, Geitmann A (2013) PDMS microcantilever-based flow sensor integration for lab-on-a-chip. IEEE Sens J 13:601–609

    Article  Google Scholar 

  • Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sens Actuators B 130:917–942

    Article  Google Scholar 

  • Oates TC, Burgess LW (2012) Sensitive refractive index detection using a broad-band optical ring resonator. Anal Chem 84:7713–7720

    Article  Google Scholar 

  • Palmieri M (2015) Piezoelectric microfluidic pumping device and method for using the same. US Patent No. 08956325

  • Riche CT, Zhang C, Gupta M, Malmstadt N (2014) Fluoropolymer surface coatings to control droplets in microfluidic devices. Lab Chip 14:1834–1841

    Article  Google Scholar 

  • Rodriguez-Villarreal AI, Arundell M, Carmona M, Samitier J (2010) High flow rate microfluidic device for blood plasma separation using a range of temperatures. Lab Chip 10:211–219

    Article  Google Scholar 

  • Rowland DR, Love JD (1993) Evanescent wave coupling of whispering gallery modes of a dielectric cylinder. IEE Proc J 140:177–188

    Google Scholar 

  • Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25:316–319

    Article  Google Scholar 

  • Shih SCC, Gach PC, Sustarich J, Simmons BA, Adams PD, Singh S, Singh AK (2015) A droplet-to-digital (D2D) microfluidic device for single cell assays. Lab Chip 15:225–236

    Article  Google Scholar 

  • Stan CA, Tang SK, Whitesides GM (2009) Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate. Anal Chem 81:2399–2402

    Article  Google Scholar 

  • Suter JD, White IM, Zhu H, Fan X (2007) Thermal characterization of liquid core optical ring resonator sensors. Appl Opt 46:389–396

    Article  Google Scholar 

  • Suter JD, White IM, Zhu H, Shi H, Caldwell CW, Fan X (2008) Label-free quantitative DNA detection using the liquid core optical ring resonator. Biosens Bioelectron 23:1003–1009

    Article  Google Scholar 

  • Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5:591–596

    Article  Google Scholar 

  • White IM, Hanumegowda NM, Fan X (2005) Subfemtomole detection of small molecules with microsphere sensors. Opt Lett 30:3189–3191

    Article  Google Scholar 

  • White IM, Oveys H, Fan X (2006) Liquid-core optical ring-resonator sensors. Opt Lett 31:1319–1321

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Wu J, Ye J (2005) Micro flow sensor based on two closely spaced amperometric sensors. Lab Chip 5:1344–1347

    Article  Google Scholar 

  • Wu S, Lin Q, Yuen Y, Tai YC (2001) MEMS flow sensors for nanofuidic applications. Sens Actuators A 89:152–158

    Article  Google Scholar 

  • Xie J, Miao YN, Shih J, He Q, Liu J, Tai YC, Lee TD (2004) An electrochemical pumping system for on-chip gradient generation. Anal Chem 76:3756–3763

    Article  Google Scholar 

  • Xu R, Xin H, Li Q, Yang X, Chen H, Li B (2012) Photothermal formation and targeted positioning of bubbles by a fiber taper. Appl Phys Lett 101:054103

    Article  Google Scholar 

  • Yang AHJ, Soh HT (2012) Acoustophoretic Sorting of Viable Mammalian Cells in a Microfluidic Device. Anal Chem 84:10756–10762

    Article  Google Scholar 

  • Zhang K, Jian A, Zhang X, Wang Y, Li Z, Tam H (2011) Laser-induced thermal bubbles for microfluidic applications. Lab Chip 11:1389–1395

    Article  Google Scholar 

  • Zhu HY, White IM, Suter JD, Dale PS, Fan X (2007) Analysis of biomolecule detection with optofluidic ring resonator sensors. Opt Express 15:9139–9146

    Article  Google Scholar 

  • Zhu J, Ozdemir SK, Xiao YF, Li L, He L, Chen DR, Yang L (2010) On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat Photon 4:46–49

    Article  Google Scholar 

  • Zhu J, Ozdemir SK, Yilmaz H, Peng B, Dong M, Tomes M, Carmon T, Yang L (2014) Interfacing whispering-gallery microresonators and free space light with cavity enhanced Rayleigh scattering. Sci Rep 4:6396

    Article  Google Scholar 

  • Zook JM, Vreeland WN (2010) Effects of temperature, acyl chain length, and flow-rate ratio on liposome formation and size in amicrofluidic hydrodynamic focusing device. Soft Matter 6:1352–1360

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (61575039, 61475032, and 61290312), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT, IRT1218), and the 111 Project (B14039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Gong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Zhang, M., Gong, C. et al. Sensitive optofluidic flow rate sensor based on laser heating and microring resonator. Microfluid Nanofluid 19, 1497–1505 (2015). https://doi.org/10.1007/s10404-015-1663-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1663-4

Keywords

Navigation