Skip to main content
Log in

Surface Plasmon Resonance Immunosensor for IgE Analysis Using Two Types of Anti-IgE Antibodies with Different Active Recognition Sites

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A simple and novel method for the determination of an IgE antibody based on a surface plasmon resonance immunosensor for the diagnosis of an allergy is described. The method involves the use of an anti-IgE(D) antibody and an anti-IgE(H) antibody, which reacts with the Ce2 domain and the Ce3 domain of the IgE antibody. The anti-IgE(D) antibody was immobilized on the gold surface of a sensor chip by physical adsorption. An IgE antibody sample was incubated by adding it to an anti-IgE(H) antibody solution to form an anti-IgE(H) immunocomplex through a reaction of the Ce3 domain of the IgE antibody. The incubated solution was introduced onto the sensor chip and the immunocomplex of the IgE-anti-IgE(H) then reacted with the anti-IgE(D) antibody immobilized on the sensor chip through the Ce2 domain of the IgE antibody part of the IgE-anti-IgE(H) immunocomplex. The detection limit of the present method for the determination of the IgE antibody was about 10 ppb. The affinity constants for the anti-IgE(H) antibody immunocomplex with the IgE antibody in solution and that of the anti-IgE(H) antibody immunocomplex with the IgE antibody immobilized on the sensor chip by a biotin-streptavidin interaction were estimated to be 4.1 × 107 M−1 and 5.8 × 106 M−1, respectively. The affinity constant for the immunocomplex of the anti-IgE(H) antibody with the IgE antibody with the anti-IgE(D) immobilized on the sensor chip was estimated to be 4.9 × 107 M−1, 20-times larger than the affinity constant for the IgE antibody immunocomplex with the anti-IgE(D) antibody immobilized on the sensor chip, based on a direct immunoassay method of the IgE antibody under the same experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ishizaka, T. Ishizaka, and M. M. Hornbrook, J. Immunol., 1966, 97, 75.

    CAS  PubMed  Google Scholar 

  2. M. Ban and D. Hettich, Toxicol. Lett., 2001, 118, 129.

    Article  CAS  Google Scholar 

  3. V. S. Chowdary, E. C. Vinaykumar, J. J. Rao, R. Rao, K. R. Babu, and V. Rangamani, J. Allergy Asthma Immunol., Indian, 2003, 17, 21.

    Google Scholar 

  4. M. P. Kreuzer, C. K. O’ Sullivan, M. Pravda, and G. G. Guilbault, Anal. Chim. Acta, 2001, 442, 45.

    Article  CAS  Google Scholar 

  5. R. A. Barbee, M. H. Halonen, W. Kaltenborn, M. Lebowitz, and B. Burrows, J. Allergy Clin. Immunol., 1987, 79, 919.

    Article  CAS  Google Scholar 

  6. F. Cetinkaya and M. Cakir, Pediatric Otorhinolaryngology, 2005, 69, 493.

    Article  Google Scholar 

  7. A. L. Wright, D. Sherrill, C. J. Holberg, M. Halonen, and F. D. Martinez, J. Allergy Clin. Immunol., 1999, 104, 585.

    Article  Google Scholar 

  8. P. L. B. Bruynzeel and L. A. M. J. Houbern, Clini. Chim. Acta, 1981, 112, 315.

    Article  CAS  Google Scholar 

  9. I. P. Lewkowich, J. D. Rempel, and K. T. Hayglass, J. Immunol. Methods, 2004, 286, 123.

    Article  CAS  Google Scholar 

  10. N. Matsubashi and H. Asagawa, “Meneki Kese Gaku (in Japanese)”, 1979, Kodansha, Tokyo, 25.

    Google Scholar 

  11. J. W. Choi, K. W. Park, D. B. Lee, W. Lee, and W. H. Lee, Biosens. Bioelectron., 2005, 20, 2300.

    Article  CAS  Google Scholar 

  12. P. M. Boltovets, B. Snopok, V. R. Boyko, T. P. Shevchenko, N. S. Dyachenko, and Y. M. Shirshov, J. Biol. Methods, 2004, 121, 101.

    CAS  Google Scholar 

  13. M. Gotoh, M. Hasebe, T. Ohia, Y. Hasegawa, Y. Shinohara, H. Sota, J. Nakano, and M. Tosu, Gene Anal. Biomol. Eng., 1997, 14, 17.

    Article  Google Scholar 

  14. Y. Sato, K. Sato, K. Hosokawa, and M. Maeda, Anal. Biochem., 2006, 355, 125.

    Article  CAS  Google Scholar 

  15. C. Boozer, G. Kim, S. Cong, H. Guan, and T. Londergan, Curr. Opin. Biotechnol., in press.

  16. S. H. Choi, J. W. Lee, and S. J. Sim, Enzyme Microb. Technol., 2004, 35, 683.

    Article  CAS  Google Scholar 

  17. G. Sakai, K. Ogata, T. Uda, N. Miura, and N. Yamazoe, Sens. Actuators, B, 1998, 49, 5.

    Article  CAS  Google Scholar 

  18. K. V. Gobi, M. Sasaki, Y. Shoyama, and N. Miura, Sens. Actuators, B, 2003, 89, 137.

    Article  Google Scholar 

  19. D. R. Shankaran, K. V. Gobi, T. Sakai, K. Matsumoto, K. Toko, and N. Miura, Sens. Actuators, B, 2004, 100, 450.

    Article  CAS  Google Scholar 

  20. G. Sakai, S. Nakata, T. Uda, N. Miura, and N. Yamazoe, Electrochim. Acta, 1999, 44, 3849.

    Article  CAS  Google Scholar 

  21. E. Laplantine, L. Vallar, K. Mann, N. Kieffer, and M. Aumailley, J. Cell Sci., 2000, 113, 1167.

    Article  CAS  Google Scholar 

  22. P. Sriramarao, P. Steffner, and K. R. Gehlsen, J. Biol. Chem., 1993, 268, 22036.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Imato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Ren, J., Nakajima, H. et al. Surface Plasmon Resonance Immunosensor for IgE Analysis Using Two Types of Anti-IgE Antibodies with Different Active Recognition Sites. ANAL. SCI. 23, 31–38 (2007). https://doi.org/10.2116/analsci.23.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.23.31

Navigation