Skip to main content
Log in

Simultaneous Detection of Multiple β-Adrenergic Agonists with 2-Directional Lateral Flow Strip Platform

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Clenbuterol (CL), salbutamol (SAL) and ractopamine (RAC) are the three common β-adrenergic agonists, which are the main hazards in food safety and affect human health through the food chain. A convenient and efficient method is urgently required to perform on-site detection of multiple β-adrenergic agonists to avoid frequent poisoning incidents. In this paper, a 2-directional lateral flow strip technique (2-directional LFS) is developed for rapid and simultaneous detection of CL, SAL and RAC with single sampling. Compared to the conventional lateral flow strip, this 2-directional LFS technique can realize simultaneous detection of three or more target analytes without any change of intrinsic simplicity of LFS. Furthermore, this 2-directional LFS can effectively avoid the potential intrinsic cross-reactivity among the reagents to analogues. Under the optimized conditions, CL, SAL and RAC were all successfully determined with satisfactory results in both buffer and urine samples with the detection limit as low as 0.5 ng/mL. This 2-directional LFS technique can revolutionize the commercial single-analyte LFS products and can effectively widen the applications of the classic LFS in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Song, N. Liu, Z. Y. Zhao, E. N. Ediage, S. L. Wu, C. P. Sun, D. S. Sarah, and A. B. Wu, Anal. Chem., 2014, 86, 4995.

    Article  CAS  PubMed  Google Scholar 

  2. S. Danyi, G. Degand, C. Duez, B. Granier, G. Maghuin-Rogister, and M. Scippo, Anal. Chim. Acta, 2007, 589, 159.

    Article  CAS  PubMed  Google Scholar 

  3. W. W. Jing, W. Zhao, S. Liu, L. Li, C. T. Tsai, X. Y. Fan, W. J. Wu, J. Y. Li, X. Yang, and G. D. Sui, Anal. Chem., 2013, 85, 5255.

    Article  CAS  PubMed  Google Scholar 

  4. J. Y. Kang, Y. J. Zhang, X. Li, L. J. Miao, and A. G. Wu, ACS Appl. Mater. Inter., 2016, 8, 1.

    Article  Google Scholar 

  5. G. Liu, H. D. Chen, H. Z. Peng, S. P. Song, J. M. Gao, J. X. Lu, M. Ding, S. Z. Ren, Z. Y. Zou, and C. H. Fan, Biosens. Bioelectron., 2011, 28, 308.

    Article  CAS  PubMed  Google Scholar 

  6. X. Lu, H. Zheng, X. Li, X. Q. Lin, X. X. Yuan, H. Li, G. G. Li, H. Zhang, W. Z. Wang, G. S. Yang, M. Meng, R. M. Xi, and H. Y. Aboulenein, Food. Chem., 2012, 130, 1061.

    Article  CAS  Google Scholar 

  7. H. Y. Xiong, C. H. Guo, P. Liu, W. Xu, X. H. Zhang, and S. F. Wang, Anal. Chem., 2014, 86, 4729.

    Article  CAS  PubMed  Google Scholar 

  8. J. Blanca, P. Muñoz, M. Morgado, N. Méndez, A. Aranda, T. Reuvers, and H. Hooghuis, Anal. Chim. Acta, 2005, 529, 199.

    Article  CAS  Google Scholar 

  9. K. R. Mastrianni, K. Metavarauyuth, W. E. Brewer, and Q. Wang, J. Chromatogr. B, 2018, 1084, 64.

    Article  CAS  Google Scholar 

  10. L. He, Y. J. Su, Z. L. Zeng, Y. H. Liu, and X. H. Huang, Anim. Feed. Sci. Tech., 2007, 132, 316.

    Article  CAS  Google Scholar 

  11. H. J. Du, Y. X. Chu, H. Yang, K. Zhao, J. G. Li, P. She, X. Zhang, and A. P. Deng, Anal. Methods, 2016, 8, 3578.

    Article  CAS  Google Scholar 

  12. Y. S. Ding, Y. L. Qi, and X. M. Suo, Anal. Methods, 2013, 5, 2623.

    Article  CAS  Google Scholar 

  13. R. R. Gaichore and A. K. Srivastava, J. Appl. Electrochem., 2012, 42, 979.

    Article  CAS  Google Scholar 

  14. Y. Tang, Z. Gao, S. Wang, X. Gao, J. Gao, Y. Ma, X. Liu, and J. Li, Biosens. Bioelectron., 2015, 71, 44.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Tang, J. Gao, X. Liu, X. Gao, T. Ma, X. Lu, and J. Li, Food. Chem., 2017, 228, 62.

    Article  CAS  PubMed  Google Scholar 

  16. Z. Z. Wu, E. B. Xu, M. F. J. Chughtai, and J. Irudayaraj, Food. Chem., 2017, 230, 673.

    Article  CAS  PubMed  Google Scholar 

  17. G. Zhu, Y. Hu, J. Gao, and L. Zhong, Anal. Chim. Acta, 2011, 697, 61.

    Article  CAS  PubMed  Google Scholar 

  18. T. Mahmoudi, M. De La Guardia, B. Shirdel, A. Mokhtarzadeh, and B. Baradaran, TrAC Trends Anal. Chem., 2019, 116, 13.

    Article  CAS  Google Scholar 

  19. C. M. Song, A. M. Zhi, Q. T. Liu, J. F. Yang, G. C. Jia, J. Shervin, L. Tang, X. F. Hu, R. G. Deng, C. L. Xu, and G. P. Zhang, Biosens. Bioelectron., 2013, 50, 62.

    Article  CAS  PubMed  Google Scholar 

  20. L. M. Hu, K. Luo, J. Xia, G. M. Xu, C. H. Wu, G. G. Han, M. Liu, and W. H. Lai, Biosens. Bioelectron., 2012, 91, 95.

    Article  Google Scholar 

  21. Y. H. Bai, Z. H. Liu, Y. F. Bi, X. Wang, Y. Z. Jin, L. Sun, H. J. Wang, C. M. Zhang, and S. X. Xu, J. Agric. Food Chem., 2012, 60, 11618.

    Article  CAS  PubMed  Google Scholar 

  22. Y. Chen, J. Sun, Y. Xianyu, B. Yin, Y. Niu, S. Wang, F. Cao, X. Zhang, Y. Wang, and X. Jiang, Nanoscale, 2016, 8, 15205.

    Article  CAS  PubMed  Google Scholar 

  23. H. Wang, Y. Zhang, H. Li, B. Du, H. Ma, D. Wu, and Q. Wei, Biosens. Bioelectron., 2013, 49, 14.

    Article  PubMed  Google Scholar 

  24. Y. Xu, Y. Liu, Y. Wu, X. Xia, Y. Liao, and Q. Li, Anal. Chem., 2014, 86, 5611.

    Article  CAS  PubMed  Google Scholar 

  25. G. Y. Ang, C. Y. Yu, and C. Y. Yean, Biosens. Bioelectron., 2012, 38, 151.

    Article  CAS  PubMed  Google Scholar 

  26. Y. Du, A. Pothukuchy, J. D. Gollihar, A. Nourani, B. Li, and A. D. Ellingqton, Angew. Chem. Int. Ed., 2016, 56, 992.

    Article  Google Scholar 

  27. X. Gao, H. Xu, M. Baloda, A. S. Gurung, L. P. Xu, T. Wang, and X. J. Zhang, Biosens. Bioelectron., 2014, 54, 578.

    Article  CAS  PubMed  Google Scholar 

  28. J. Hu, Z. L. Zhang, C. Y. Wen, M. Tang, L. L. Wu, C. Liu, L. Zhu, and D. W. Pang, Anal. Chem., 2016, 88, 6577.

    Article  CAS  PubMed  Google Scholar 

  29. D. Duan, K. L. Fan, D. Zhang, S. G. Tan, M. F. Liang, Y. Liu, J. L. Zhang, P. H. Zhang, W. Liu, X. G. Qiu, G. P. Kobinger, G. F. Gao, and X. Y. Yan, Biosens. Bioelectron., 2015, 74, 134.

    Article  CAS  PubMed  Google Scholar 

  30. M. Kong, J. H. Shin, S. Heu, J. K. Park, and S. Ryu, Biosens Bioelectron., 2017, 96, 173.

    Article  CAS  PubMed  Google Scholar 

  31. J. H. Shin and J. K. Park, Anal. Chem., 2016, 88, 10374.

    Article  CAS  PubMed  Google Scholar 

  32. Y. T. Chen, N. Cheng, Y. C. Xu, K. L. Huang, Y. B. Luo, and W. T. Xu, Biosen. Bioelectron., 2016, 81, 317.

    Article  CAS  Google Scholar 

  33. L. Yao, J. Teng, M. Y. Zhu, W. L. Zheng, G. D. Liu, F. Xue, and W. Chen, Biosens. Bioelectron., 2016, 85, 331.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Qin, W. Wen, X. H. Zhang, H. S. Gu, and S. F. Wang, Chem. Commun., 2015, 51, 8273.

    Article  CAS  Google Scholar 

  35. Y. K. Wang, Q. Zou, J. H. Sun, H. A. Wang, X. M. Sun, Z. F. Chen, and Y. X. Yan, Food. Chem., 2015, 63, 136.

    Article  CAS  Google Scholar 

  36. J. H. Chen, Z. H. Fang, P. C. Lie, and L. W. Zeng, Anal. Chem., 2012, 84, 6321.

    Article  CAS  PubMed  Google Scholar 

  37. D. A. Giljohann, D. S. Seferos, W. L. Daniel, M. D. Massich, P. C. Patel, and C. A. Mirkin, Angew Chem. Int. Ed., 2010, 49, 3280.

    Article  CAS  Google Scholar 

  38. L. Yao, Y. W. Ye, J. Teng, F. Xue, D. D. Pan, B. G. Li, and W. Chen, Anal. Chem., 2017, 89, 9775.

    Article  CAS  PubMed  Google Scholar 

  39. L. Huang, L. Zheng, Y. J. Chen, F. Xue, L. Cheng, S. B. Adeloju, and W. Chen, Biosens. Bioelectron., 2015, 66, 431.

    Article  CAS  PubMed  Google Scholar 

  40. L. Yao, J. Teng, M. Y. Zhu, L. Zheng, Y. H. Zhong, G. D. Liu, F. Xue, and W. Chen, Biosens. Bioelectron., 2016, 85, 331.

    Article  CAS  PubMed  Google Scholar 

  41. W. L. Zheng, J. Teng, L. Cheng, Y. W. Ye, D. D. Pan, J. J. Wu, F. Xue, D. Liu, and W. Chen, Biosens. Bioelectron., 2016, 80, 574.

    Article  CAS  PubMed  Google Scholar 

  42. Y. H. Zhong, Y. J. Chen, L. Yao, D. P. Zhao, L. Zheng, G. D. Liu, Y. W. Ye, and W. Chen, Microchim. Acta, 2016, 183, 1989.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the grant of 2017YFF0208600, 2017YFC1601200, China Agriculture Research System-48 (CARS-48), Anhui Provincial Modern Agro-industry Tech. Research System (NYCYTX-2016-84), the fundamental research fund for central university 2017HGPA0162, JZ2018HGTA0205, PA2017GDQT0018, and NSFC 21475030.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guodong Liu or Wei Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Song, Q., Wang, X. et al. Simultaneous Detection of Multiple β-Adrenergic Agonists with 2-Directional Lateral Flow Strip Platform. ANAL. SCI. 36, 653–657 (2020). https://doi.org/10.2116/analsci.19P218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P218

Keywords

Navigation