Skip to main content
Log in

Aptamer based ultrasensitive determination of the β-adrenergic agonist ractopamine using PicoGreen as a fluorescent DNA probe

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an aptamer based assay for determination of ractopamine (RAC) by using PicoGreen (PG) as a fluorescent probe specific for dsDNA. In the absence of RAC, the aptamer forms a duplex structure with a complementary sequence that results in enhanced PG fluorescence. Upon binding to RAC, the aptamer undergoes a structural switch. This reduces the number of DNA duplexes formed and causes a reduction of fluorescence intensity of PG as measured at excitation/emission wavelengths of 480/520 nm. Under optimized conditions, the dynamic calibration plot covers the 50 pM to 50 μM concentration range, with a 50 pM detection limit. This meets the safety supervision regulations of the European Commission in terms of residue limits of RAC in food. The method displays high selectivity over other β-adrenergic agonists including clenbuterol, dopamine and salbutamol. The assay was successfully applied to samples of swine urine at spiking levels of 7.4 nM, 22.2 nM and 37 nM. Average recoveries ranged from 95 to 110%, with an RSD of <1.5%. The method is expected to represent a promising tool for simple, rapid and sensitive on-site detection of RAC in animal products.

An aptamer based fluorescent assay for determination of ractopamine was developed with a dynamic range of 50 pM to 50 μM. The average recovery from spiked urine samples ranged from 95 to 110%, with an RSD of <1.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhou Y et al (2014) Sensitive immunoassay for the beta-agonist ractopamine based on glassy carbon electrode modified with gold nanoparticles and multi-walled carbon nanotubes in a film of poly-arginine. Microchim Acta 181(15–16):1973–1979

    Article  CAS  Google Scholar 

  2. Chen S et al (2015) An on-site immunosensor for ractopamine based on a personal glucose meter and using magnetic beta-cyclodextrin-coated nanoparticles for enrichment, and an invertase-labeled nanogold probe for signal amplification. Microchim Acta 182(3–4):815–822

    Article  CAS  Google Scholar 

  3. Zhang ZH et al (2015) Novel zinc oxide nanostructures fabrication by oxygen plasma surface modification and improvement of ractopamine detection. Plasma Chem Plasma Process 35(4):785–798

    Article  CAS  Google Scholar 

  4. Zhang Z et al (2015) Manganese(II) phosphate nanoflowers as electrochemical biosensors for the high-sensitivity detection of ractopamine. Sensors Actuators B Chem 211:310–317

    Article  CAS  Google Scholar 

  5. Du W et al (2014) Combined microextraction by packed sorbent and high-performance liquid chromatography-ultraviolet detection for rapid analysis of ractopamine in porcine muscle and urine samples. Food Chem 145:789–795

    Article  CAS  Google Scholar 

  6. Mitchell GA, Dunnavan G (1998) Illegal use of beta-adrenergic agonists in the United States. J Anim Sci 76(1):208–211

    Article  CAS  Google Scholar 

  7. Ding GL et al (2015) Development and validation of a high-performance liquid chromatography method for determination of ractopamine residue in pork samples by solid phase extraction and pre-column derivatization. Meat Sci 106:55–60

    Article  CAS  Google Scholar 

  8. Vichapong J, Burakham R, Srijaranai S (2016) Determination of beta-agonists in porcine meats by ion-pair extraction and high performance liquid chromatography. Anal Lett 49(2):208–216

    Article  CAS  Google Scholar 

  9. Gao HF et al (2014) Highly sensitive multianalyte immunochromatographic test strip for rapid chemiluminescent detection of ractopamine and salbutamol. Anal Chim Acta 839:91–96

    Article  CAS  Google Scholar 

  10. Zhao L et al (2010) Simultaneous determination of melamine and clenbuterol in animal feeds by GC-MS. Chromatographia 72(3–4):365–368

    Article  CAS  Google Scholar 

  11. Chen C et al (2015) Simultaneous separation and sensitive detection of four beta 2-agonists in biological specimens by CE-UV using a field-enhanced sample injection method. Anal Methods 7(1):175–180

    Article  CAS  Google Scholar 

  12. Zhou Y et al (2013) Colorimetric detection of ractopamine and salbutamol using gold nanoparticles functionalized with melamine as a probe. Talanta 112:20–25

    Article  CAS  Google Scholar 

  13. Li CY, Jiang JQ (2012) Preparation of a polyclonal antibody based heterologous indirect competitive ELISA for detecting ractopamine residue. Journal of Food Agriculture & Environment 10(2):1349–1352

    CAS  Google Scholar 

  14. Shelver WL, Smith DJ (2002) Application of a monoclonal antibody based ELISA for the determination of ractopamine in incurred samples from food animals. Abstr Pap Am Chem Soc 223:U56–U56

    Google Scholar 

  15. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510

    Article  CAS  Google Scholar 

  16. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  17. Jarujamrus P et al (2015) Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 142:86–93

    Article  CAS  Google Scholar 

  18. Lee SC et al (2015) Development of receptor-based inhibitory RNA aptamers for anthrax toxin neutralization. Int J Biol Macromol 77:293–302

    Article  CAS  Google Scholar 

  19. Brockmann C et al (2015) Intravitreal inhibition of complement C5a reduces choroidal neovascularization in mice. Graefes Arch Clin Exp Ophthalmol 253(10):1695–1704

    Article  CAS  Google Scholar 

  20. Romhildt L et al (2013) Patterned biochemical functionalization improves aptamer-based detection of unlabeled thrombin in a sandwich assay. ACS Appl Mater Interfaces 5(22):12029–12035

    Article  Google Scholar 

  21. Eid C et al (2015) Rapid slow off-rate modified aptamer (SOMAmer)-based detection of C-reactive protein using Isotachophoresis and an ionic spacer. Anal Chem 87(13):6736–6743

    Article  CAS  Google Scholar 

  22. Pang YF et al (2015) A fluorescent aptasensor for H5N1 influenza virus detection based-on the core-shell nanoparticles metal-enhanced fluorescence (MEF). Biosens Bioelectron 66:527–532

    Article  CAS  Google Scholar 

  23. Abbaspour A et al (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus. Biosens Bioelectron 68:149–155

    Article  CAS  Google Scholar 

  24. Wu X et al (2015) DNA aptamer selected against pancreatic ductal adenocarcinoma for in vivo imaging and clinical tissue recognition. Theranostics 5(9):985–994

    Article  CAS  Google Scholar 

  25. Golub E et al (2009) Electrochemical, Photoelectrochemical, and surface Plasmon resonance detection of cocaine using supramolecular aptamer complexes and metallic or semiconductor nanoparticles. Anal Chem 81(22):9291–9298

    Article  CAS  Google Scholar 

  26. Liu J et al (2014) Highly sensitive colorimetric detection of 17beta-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4:7571

    Article  CAS  Google Scholar 

  27. Lv Z et al (2014) A simple and sensitive approach for ochratoxin a detection using a sensor fluorescent aptasensor. PLoS One 9(1):e85968

    Article  Google Scholar 

  28. Yang F et al (2016) Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Biosens Bioelectron 77:347–352

    Article  CAS  Google Scholar 

  29. Chen A, Yang S (2015) Replacing antibodies with aptamers in lateral flow immunoassay. Biosens Bioelectron 71:230–242

    Article  CAS  Google Scholar 

  30. Noothi SK et al (2009) Enhanced DNA dynamics due to cationic reagents, topological states of dsDNA and high mobility group box 1 as probed by PicoGreen. FEBS J 276(2):541–551

    Article  CAS  Google Scholar 

  31. Koba M, Szostek A, Konopa J (2007) Limitation of usage of PicoGreen dye in quantitative assays of double-stranded DNA in the presence of intercalating compounds. Acta Biochim Pol 54(4):883–886

    CAS  Google Scholar 

  32. Jenkins GR, Helber JT, Freese LD (2012) Concordance study: methods of quantifying corn and soybean genomic DNA intended for real-time polymerase chain reaction applications. J Agric Food Chem 60(34):8323–8332

    Article  CAS  Google Scholar 

  33. Yu MX et al (2015) Rapid detection and enumeration of total bacteria in drinking water and tea beverages using a laboratory-built high-sensitivity flow cytometer. Anal Methods 7(7):3072–3079

    Article  CAS  Google Scholar 

  34. Lv ZZ et al (2013) Highly sensitive fluorescent detection of small molecules, ions, and proteins using a universal label-free aptasensor. Chem Commun 49(48):5465–5467

    Article  CAS  Google Scholar 

  35. Peterson EJR et al (2013) Inhibitors of Streptococcus Pneumoniae surface endonuclease EndA discovered by high-throughput screening using a PicoGreen fluorescence assay. J Biomol Screen 18(3):247–257

    Article  CAS  Google Scholar 

  36. Wang KY et al (2015) A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence. Biosens Bioelectron 63:172–177

    Article  CAS  Google Scholar 

  37. Wang P et al. (2016) An aptamer based assay for the β-adrenergic agonist ractopamine based on aggregation of gold nanoparticles in combination with a molecularly imprinted polymer. Microchimica Acta

  38. Ren ML et al (2014) Lateral flow immunoassay for quantitative detection of ractopamine in swine urine. Biomed Environ Sci 27(2):134–137

    CAS  Google Scholar 

  39. Wang MY et al (2016) Enhanced simultaneous detection of ractopamine and salbutamol - via electrochemical-facial deposition of MnO2 nanoflowers onto 3D RGO/Ni foam templates. Biosens Bioelectron 78:259–266

    Article  CAS  Google Scholar 

  40. Li X et al (2010) Development of rapid immunoassays for the detection of ractopamine in swine urine. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment 27(8):1096–1103

    Article  CAS  Google Scholar 

  41. Dong JX et al (2012) Development of a single-chain variable fragment-alkaline phosphatase fusion protein and a sensitive direct competitive chemiluminescent enzyme immunoassay for detection of ractopamine in pork. Anal Chim Acta 736:85–91

    Article  CAS  Google Scholar 

  42. Du W et al (2013) Combined solid-phase microextraction and high-performance liquid chromatography with ultroviolet detection for simultaneous analysis of clenbuterol, salbutamol and ractopamine in pig samples. Biomed Chromatogr 27(12):1775–1781

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All authors gratefully acknowledge the funding support from the Special Fund for Agro Scientific Research in the Public Interest (201203046, 201203023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailiang Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 89 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhang, G., Huang, Y. et al. Aptamer based ultrasensitive determination of the β-adrenergic agonist ractopamine using PicoGreen as a fluorescent DNA probe. Microchim Acta 184, 439–444 (2017). https://doi.org/10.1007/s00604-016-2032-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-2032-z

Keywords

Navigation