Skip to main content
Log in

Ultra-sensitive Trace-Water Optical Sensor with In situ-synthesized Metal-Organic Framework in Glass Paper

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Monitoring of trace water in industrial gases is strongly recommended because contaminants cause serious problems during use, especially in the semiconductor industry. An ultra-sensitive trace-water sensor was developed with an in situ-synthesized metal-organic framework as the sensing material. The sample gas is passed through the sensing membrane and efficiently and rapidly collected by the sensing material in the newly designed gas collection/detection cell. The sensing membrane, glass paper impregnated with copper 1,3,5-benzenetricarboxylate (Cu-BTC), is also newly developed. The amount and density of the sensing material in the sensing membrane must be well balanced to achieve rapid and sensitive responses. In the present study, Cu-BTC was synthesized in situ in glass paper. The developed system gave high sensing performances with a limit of detection (signal/noise ratio = 3) of 9 parts per billion by volume (ppbv) H2O and a 90% response time of 86 s for 200 ppbv H2O. The reproducibility of the responses within and between lots had relative standard deviations for 500 ppbv H2O of 0.8% (n = 10) and 1.5% (n = 3), respectively. The long-term (2 weeks) stability was 7.3% for 400 ppbv H2O and one-year continuous monitoring test showed the sensitivity change of <~3% before and after the study. Furthermore, the system response was in good agreement with the response achieved in cavity ring-down spectroscopy. These performances are sufficient for monitoring trace water in industrial gases. The integrated system with light and gas transparent structure for gas collection/absorbance detection can also be used for other target gases, using specific metal-organic frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Feng, R. Clement, and M. Raynor, J. Crystal Growth, 2008, 310, 4780.

    Article  CAS  Google Scholar 

  2. J. Yao, H. Funke, and M. Raynor, Taiyo-Nissan Gihou, 2004, 23, 43.

    CAS  Google Scholar 

  3. K. Hashiguchi, D. Lisak, A. Cygan, R. Ciuryło, and H. Abe, Sens. Actuators, A, 2016, 241, 152.

    Article  CAS  Google Scholar 

  4. J. T. Hodges and D. Lisak, Appl. Phys. B, 2006, 85, 375.

    Article  CAS  Google Scholar 

  5. J. Tao, Y. Luo, L. Wang, H. Cai, T. Sun, J. Song, H. Liu, and Y. Gu, Sci. Report, 2016, 6, 29672.

    Article  CAS  Google Scholar 

  6. D. Saha, S. Das, and K. Sengupta, Sens. Actuators, B, 2008, 128, 383.

    Article  CAS  Google Scholar 

  7. S. Ohira, K. Goto, K. Toda, and P. K. Dasgupta, Anal. Chem., 2012, 84, 8891.

    Article  CAS  PubMed  Google Scholar 

  8. C. D. Mowry, A. S. Pimentel, E. S. Sparks, M. W. Moorman, K. E. Achyuthan, and R. P. Manginell, Anal. Sci., 2016, 32, 177.

    Article  CAS  PubMed  Google Scholar 

  9. H. Abe, Synthesiology, 2009, 2, 206.

    Article  Google Scholar 

  10. S. Ohira, Y. Miki, T. Matsuzaki, N. Nakamura, Y. Sato, Y. Hirose, and K. Toda, Anal. Chim. Acta, 2015, 886, 188.

    Article  CAS  PubMed  Google Scholar 

  11. C. Zhao, Y. Liu, and Y. Li, Anal. Sci., 2015, 31, 1035.

    Article  PubMed  Google Scholar 

  12. D. Farrusseng, “Metal-organic Frameworks Applications from Catalysis to Gas Storage”, 2011, Wiley-VCH Verlag, Weinheim, Germany.

    Book  Google Scholar 

  13. P. Davydovskaya, R. Pohle, A. Tawil, and M. Fleischer, Sens. Actuators, B, 2013, 187, 142.

    Article  CAS  Google Scholar 

  14. L. E. Kreno, J. T. Hupp, and R. P. Van Duyne, Anal. Chem., 2010, 82, 8042.

    Article  CAS  PubMed  Google Scholar 

  15. E. Biemmi, A. Darga, N. Stock, and T. Bein, Micropor Mesopor. Matter., 2008, 114, 380.

    Article  CAS  Google Scholar 

  16. L. Grajciar, O. Bludsky, and P. Nachtigall, J. Phys. Chem. Lett., 2010, 1, 3354.

    Article  CAS  Google Scholar 

  17. S. Ohira, P. K. Dasgupta, and K. A. Shug, Anal. Chem., 2009, 81, 4183.

    Article  CAS  PubMed  Google Scholar 

  18. S. Ohira, E. Wanigasekara, D. M. Rudkevich, and P. K. Dasgupta, Talanta, 2009, 88, 1814.

    Article  Google Scholar 

  19. T. Orii, T. Okazaki, N. Hata, K. Sugawara, F. A. Rahman, and H. Kuramitz, Anal. Sci., 2017, 33, 883.

    Article  CAS  PubMed  Google Scholar 

  20. D. Nagaraju, D. G. Bhagat, R. Banerjee, and U. K. Kharul, J. Mater. Chem. A, 2013, 1, 8828.

    Article  CAS  Google Scholar 

  21. C. M. Hansen, Prog. Org. Coat., 2001, 42, 167.

    Article  CAS  Google Scholar 

  22. G. W. Peterson, D. K. Britt, D. T. Sun, J. J. Mahle, M. Browe, T. Demasky, S. Smith, A. Jenkins, and J. A. Rossin, Ind. Eng. Chem. Res., 2015, 54, 3626.

    Article  CAS  Google Scholar 

  23. M. Amano and H. Abe, Meas. Sci. Technol., 2016, 28, 025007.

    Article  Google Scholar 

  24. C. Ji, L. Ma, M. Yin, W. Yang, and K. Pan, Chem. Asian J., 2016, 11, 2316.

    Article  CAS  PubMed  Google Scholar 

  25. H. Lee, S. H. Jung, W. S. Han, J. H. Moon, S. Kang, J. Y. Lee, J. H. Jung, and S. Shinkai, Chem. Eur. J., 2011, 17, 2823.

    Article  CAS  PubMed  Google Scholar 

  26. G. Nickerl, I. Senkovska, and S. Kaskel, Chem. Commun., 2015, 51, 2280.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Part of this project was supported by the Japan Science and Technology Agency (JST), Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP), No. AS2621318M, and JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant number JP26810076.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-Ichi Ohira.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohira, SI., Nakamura, N., Endo, M. et al. Ultra-sensitive Trace-Water Optical Sensor with In situ-synthesized Metal-Organic Framework in Glass Paper. ANAL. SCI. 34, 495–500 (2018). https://doi.org/10.2116/analsci.17P453

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17P453

Keywords

Navigation