Skip to main content
Log in

Frequency-stabilized cavity ring-down spectrometer for high-sensitivity measurements of water vapor concentration

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a portable spectrometer that uses the frequency-stabilized cavity ring-down spectroscopy technique capable of high-precision measurements of trace water vapor concentration. Measuring one of the strongest rovibrational transitions in the ν13 water vapor combination band near ˜ν=7181.156 cm-1, we compare spectroscopic and thermodynamic determinations of trace water vapor in N2, and find systematic differences attributable to water vapor background effects and/or uncertainties in line intensities. We also compare the frequency-stabilized ring-down method with other cavity ring-down approaches that are based on unstabilized probe lasers and unstabilized ring-down cavities. We show that for the determination of water vapor concentration, the frequency-stabilized cavity ring-down method has the minimum measurement uncertainty of these techniques. The minimum noise-equivalent absorption coefficient of the spectrometer was 1.2×10-10 cm-1 Hz-1/2, which further corresponds to a minimum detectable water vapor mole fraction equal to 0.7×10-9 for an absorption spectrum of 10 minutes duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.L. Kebabian, C.E. Kolb, A. Freedman, J. Geophysic. Res. 107, 4670 (2002)

    Article  ADS  Google Scholar 

  2. J. Xie, B.A. Paldus, E.H. Wahl, J. Martin, T.G. Owano, C.H. Kruger, J.S. Harris, R.N. Zare, Chem. Phys. Lett. 284, 387 (1998)

    Article  ADS  Google Scholar 

  3. J. Wallace, Las. Focus World, March, 15 (2006)

  4. H.H. Funke, B.L. Grissom, C.E. McGrew, M.W. Raynor, Rev. Sci. Instrum. 74, 3909 (2003)

    Article  ADS  Google Scholar 

  5. G.E. Scace, J.T. Hodges, Proc. Int. Symp. on Temperature and Thermal Measurements in Ind. and Sci. (TEMPMEKO 2001) (VDE Verlag, Berlin, 2002), pp. 597–602

  6. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)

    Article  ADS  Google Scholar 

  7. G. Berden, R. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000)

    Article  Google Scholar 

  8. S.S. Brown, Chem. Rev. 103, 5219 (2003)

    Article  Google Scholar 

  9. A.J. Hallock, E.S.F. Berman, R.N. Zare, Anal. Chem. 74, 1741 (2002)

    Article  Google Scholar 

  10. R.L. Vander Wal, T. M Ticich, Appl. Opt. 38, 1444 (1999)

    Article  ADS  Google Scholar 

  11. A.W. Strawa, R. Castaneda, T. Owano, D.S. Baer, B.A. Paldus, J. Atmospher. Oceanic Technol. 20, 454 (2003)

    Article  ADS  Google Scholar 

  12. D. Romanini, K.K. Lehmann, J.Chem. Phys. 99, 6287 (1993)

    Article  ADS  Google Scholar 

  13. P. Zalicki, R.N. Zare, J. Chem. Phys. 102, 2708 (1995)

    Article  ADS  Google Scholar 

  14. J.T. Hodges, J.P. Looney, R.D. van Zee, J. Chem. Phys. 105 10, 278 (1996)

    Google Scholar 

  15. K.K. Lehmann, D. Romanini, J. Chem. Phys. 105 10, 263 (1996)

    Google Scholar 

  16. J.T. Hodges, J.P. Looney, R.D. van Zee, Appl. Opt. 35, 4112 (1996)

    Article  ADS  Google Scholar 

  17. J.P. Looney, J.T. Hodges, R.D. van Zee, Quantitative absorption measurements using cavity-ringdown spectroscopy with pulsed lasers, In: Cavity-Ringdown Spectroscopy: An Ultratrace-Absorption Measurement Technique, K.A. Busch, M.A. Busch (Eds.) (Oxford Univ. Press, 1998), Chapt. 7

  18. R.D. van Zee, J.T. Hodges, J.P. Looney, Appl. Opt. 38, 3951 (1999)

    Article  ADS  Google Scholar 

  19. D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997)

    Article  ADS  Google Scholar 

  20. D. Romanini, A.A. Kachanov, F. Stoeckel, Chem. Phys. Lett. 270, 538 (1997)

    Article  ADS  Google Scholar 

  21. A.R. Awtry, J.H. Miller, Appl. Phys. B 75, 255 (2002)

    Article  ADS  Google Scholar 

  22. M. Hippler, M. Quack, J. Chem. Phys. 116, 6045 (2002)

    Article  ADS  Google Scholar 

  23. J.B. Dudek, P.B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K.K. Lehmann, Anal. Chem. 75, 4599 (2003)

    Article  Google Scholar 

  24. P. Macko, D. Romanini, S.N. Mikhailenko, O.V. Naumenko, S. Kassi, A. Jenourvrier, Vl.G. Tyuterev, A. Campargue, J. Mol. Spectrosc. 227, 90 (2004)

    Article  ADS  Google Scholar 

  25. Tiger Optics, 250 Titus Ave., Warrington, PA, http://www.tigeroptics.com/

  26. D. Lisak, J.T. Hodges, R. Ciuryło, Phys. Rev. A 73, 012507 (2006)

    Article  ADS  Google Scholar 

  27. J.T. Hodges, H.P. Layer, W.W. Miller, G.E. Scace, Rev. Sci. Instrum. 75, 849 (2004)

    Article  ADS  Google Scholar 

  28. J.T. Hodges, R. Ciuryło, Rev. Sci. Instrum. 76, 023112 (2005)

    Article  ADS  Google Scholar 

  29. D. Halmer, G. von Basum, P. Hering, M. Murtz, Rev. Sci. Instrum. 75, 2187 (2004)

    Article  ADS  Google Scholar 

  30. R.W. Hyland, A. Wexler, J. Res. NBS 77A, 115 (1973)

    Google Scholar 

  31. A. Wexler, J. Res. NBS 81A, 5 (1977)

    Google Scholar 

  32. T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Willke, R.L. Byer, Rev. Sci. Instrum. 71, 347 (2000)

    Article  ADS  Google Scholar 

  33. J. Morville, S. Kassi, M. Chenevier, D. Romanini, Appl. Phys. B 80, 1027 (2005)

    Article  ADS  Google Scholar 

  34. R.Z. Martinez, M. Metsälä, O. Vaittinen, T. Lantta, L. Halonen, J. Opt. Soc. Am. B 23, 727 (2006)

    Article  ADS  Google Scholar 

  35. L. Galatry, Phys. Rev. 122, 1218 (1961)

    Article  MATH  ADS  Google Scholar 

  36. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J.V. Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.T. Hodges.

Additional information

PACS

33.20.-t; 33.70.Jg; 33.70.Fd; 42.62.Fi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodges, J., Lisak, D. Frequency-stabilized cavity ring-down spectrometer for high-sensitivity measurements of water vapor concentration. Appl. Phys. B 85, 375–382 (2006). https://doi.org/10.1007/s00340-006-2411-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2411-y

Keywords

Navigation