Skip to main content

Advertisement

Log in

Environmental costs of green hydrogen production as energy storage for renewable energies

  • Original research
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Green hydrogen can play an important role in the energy transition because it can be used to store renewable energies in the long term, especially if the gas infrastructure is already in place. Furthermore, environmental costs are becoming increasingly important for companies and society, so that this study examines the environmental costs of green hydrogen production and compares them with the environmental costs of steam reforming, the conventional process that produces more than 90% of the world's hydrogen. For the green hydrogen production, the renewable energy sources solar, wind, and hydro energy are taken into account. The study shows that hydrogen production from hydro energy causes less environmental costs than the production from wind and solar energy. Moreover, the environmental costs of steam reforming are in part more than twice as high as the environmental costs of hydrogen produced from wind and hydro energy, whereby only the impact category climate change could be considered for steam reforming due to a lack of information.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

AEL :

Alkaline-Electrolysis

ESG :

Environmental, Social, and Governance

GWP :

Global Warming Potential

ILCD :

International Life Cycle Data

IPCC :

Intergovernmental Panel on Climate Change

kg :

Kilogram

kWh :

Kilowatt-hour

LCA :

Life-Cycle-Assessment

PEM :

Polymer-Exchange-Membrane

ReCiPe :

Method of calculating environmental impacts

SI :

Supplementary Information

SOEC :

Solid-Oxide-Electrolyzer-Cell

TWh :

Terawatt-hour

CO2-eq.:

Carbon dioxide equivalent

CFC-eq.:

Trichlorofluoromethane equivalent

1.4 db-eq.:

1.4 dichlorobenzene equivalent

PM2.5-eq.:

Particulate Matter less than 2.5-micrometre equivalent

kBq U235-eq.:

Kilobecquerel of Uranium-235 equivalent

NMVOC-eq.:

Non-Methane Volatile Organic Compounds equivalents

SO2-eq.:

Sulphur dioxide equivalent

P-eq.:

Phosphor equivalent

CTUh:

Comparative Toxic Unit for humans

mol H +-eq.:

The molar concentration of hydrogen ion equivalent

References

  1. Deutscher Verein des Gas- und Wasserfaches e.V. (DVGW). Hydrogen and the energy transition. https://www.dvgw.de/english-pages/topics/gas-and-energy-transition/hydrogen-and-the-energy-transition. Accessed Feb 21, 2022

  2. Deutscher Verein des Gas- und Wasserfaches e.V. (DVGW). Power-to-gas: Key-technology of the energy transition. https://www.dvgw.de/english-pages/topics/gas-and-energy-transition/power-to-gas. Accessed Feb 21, 2022

  3. A. Braun, Electrochemical Energy Systems: Foundations, Energy Storage and Conversion (De Gruyter, Berlin, Boston, 2019)

    Google Scholar 

  4. U.S. Energy Information Administration. Hydrogen explained use of hydrogen. https://www.eia.gov/energyexplained/hydrogen/use-of-hydrogen.php. Accessed Feb 25, 2023

  5. N.P. Brandon, Z. Kurban, Clean energy and the hydrogen economy. Philos. Trans. Royal Soc. A. 375(2098), 20160400 (2017). https://doi.org/10.1098/rsta.2016.0400

    Article  CAS  Google Scholar 

  6. F. Scheller, S. Wald, H. Kondzielle, P.A. Gunkel, T. Bruckner, D. Keles, Future role and economic benefits of hydrogen and synthetic energy carriers in Germany: a review of long-term energy scenarios. Sustain. Energy Technol. Assess. 56, 103037 (2023). https://doi.org/10.1016/j.seta.2023.103037

    Article  Google Scholar 

  7. M.P. Falcone, M. Hiete, A. Sapio, Hydrogen economy and sustainable development goals: Review and policy insights. Curr. Opin. Green Sustain. Chem. 31, 100506 (2021). https://doi.org/10.1016/j.cogsc.2021.100506

    Article  CAS  Google Scholar 

  8. M. Korteland, CE Delft, Delft, the Netherlands. Personal Commun, 2021.

  9. R. Rapier, Estimating the carbon footprint of hydrogen. https://www.forbes.com/sites/mitsubishiheavyindustries/2022/01/26/the-stark-difference-between-global-warming-of-15c-and-20c/?sh=3f7ba7f02a48. Accessed Feb 11, 2022

  10. M. Becker, „Wenn Unternehmen die ESG-Kriterien nicht berücksichtigen, werden sie sich ihr Geschäft nicht mehr leisten können“. https://www.eqs.com/de/ir-wissen/blog/esg-interview-investor-update/. Accessed Feb 08, 2022

  11. S. Rousseau, N. Deschacht, Public awareness of nature and environment during the COVID-19 crisis. Environ Resour Econ (Dordr) 76, 1149–1159 (2020). https://doi.org/10.1007/s10640-020-00445-w

    Article  Google Scholar 

  12. N. Kachaner, J. Nielsen, A. Portafaix, F. Rodzko, The Pandemic Is Heightening Environmental Awareness. Boston Consulting Group (BCG). https://www.bcg.com/publications/2020/pandemic-is-heightening-environmental-awareness. Accessed Nov 09, 2021

  13. R. Hren, A. Vujanovic, Y. Van Fan, J.J. Klemes, D. Krajnc, L. Cucek, Hydrogen production, storage and trasnport for renewable energy and chemicals: An environmental footprint assessment. Renew. Sustain. Energy Rev. 173, 113113 (2023). https://doi.org/10.1016/j.rser.2022.113113

    Article  CAS  Google Scholar 

  14. Ember. Rising renewables: Renewables are now the EU’s largest source of electricity. https://ember-climate.org/project/eu-power-sector-2020/. Accessed Feb 13, 2022

  15. N. Gerloff, Comparative life-cycle-assessment analysis of three major water electrolysis technologies while applying various energy scenarios for a greener hydrogen production. J. Energy Storage 43, 102759 (2021). https://doi.org/10.1016/j.est.2021.102759

    Article  Google Scholar 

  16. Department of Energy, Office of Energy Efficiency & Renewable Energy, Hydrogen and Fuel Cell Technologies Office. Hydrogen production. natural gas reforming. https://www.energy.gov/eere/fuelcells/hydrogen-production-natural-gas-reforming. Accessed Jan 12, 2022

  17. M. Kühl, Grau—grün—blau—türkis: Welche Farbe hat der Wasserstoff? 2020. https://klimaandmore.de/?p=3169. A ccessed Dec 02, 2021

  18. Ifu Hamburg GmbH. Umberto LCA+ User Manual. Dec 2017. www.umberto.de. Accessed Feb 21, 2022

  19. The ecoinvent Association. https://ecoinvent.org/. A ccessed Feb 21, 2022

  20. S. De Bruyn, M. Bijleveld, L. de Graaff, E. Schep, A. Schroten, R. Vergeer, S. Ahdour, Environmental Prices Handbook. EU28 version. Publication code: 18.7N54.125. CE Delft, Delft, the Netherlands, 2018.

  21. R. Arendt, T.M. Bachmann, M. Motoshita, V. Bach, M. Finkbeiner, Comparison of different monetization methods in LCA: A review. Suppl. Inf. Sustain. 12(24), 10493 (2020). https://doi.org/10.3390/su122410493

    Article  Google Scholar 

  22. Y. Dong, M.U. Hossain, H. Li, P. Liu, Developing conversion factors of LCIA methods for comparison of LCA results in the construction sector. Sustainability 13(16), 9016 (2021). https://doi.org/10.3390/su13169016

    Article  CAS  Google Scholar 

  23. O. Lösch, G. Zesch, U. Schmoch, E. Jochem, N. Ashley-Belbin, Bewertung der Hochtemperatureletrolyse zur Herstellung von grünem Wasserstoff für die Anwendung in der Grundstoffindustrie. Förderkennzeichen: 03ET1630A, Karlsruhe, Germany, 2020.

  24. Deutscher Bundestag. Kosten der Produktion von grünem Wasserstoff. Aktenzeichen WD 5–3000 029/20, 2020. https://www.bundestag.de/resource/blob/691748/01a954b2b2d7c70259b19662ae37a575/WD-5-029-20-pdf-data.pdf. Accessed Dec 02, 2021

  25. Nel ASA. Nel CMD 2021. Launches 1.5 USD/kg target for green renewable hydrogen to outcompete fossil alternatives. Press releases, 2021. https://nelhydrogen.com/press-release/nel-cmd-2021-launches-1-5-usd-kg-target-for-green-renewable-hydrogen-to-outcompete-fossil-alternatives/. Accessed Feb 02, 2021

  26. F. Urbansky, Überschusstrom reicht nicht für Power-to-X. https://www.springerprofessional.de/en/photovoltaik/windenergie/ueberschussstrom-reicht-nicht-fuer-power-to-x/17520446. Accessed Jan 18, 2022

  27. T. Mayer, EU-Kommission bleibt dabei: Atomenergie und Gas werden als “grün“ eingestuft. Der Standard. Feb 2, 2022. https://www.derstandard.de/story/2000133045096/eu-kommission-stuft-atomenergie-und-gas-als-gruene-investitionen-ein. Accessed Feb 15, 2022

Download references

Acknowledgments

I would like to dedicate my appreciation to my wife, Sandisiwe Palesa Gerloff, who checked the manuscript regarding grammar and spelling.

Funding

No funding for this research has been received.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written and constructed only by the mentioned author.

Corresponding author

Correspondence to Niklas Gerloff.

Ethics declarations

Conflict of interest

No conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerloff, N. Environmental costs of green hydrogen production as energy storage for renewable energies. MRS Energy & Sustainability 10, 174–180 (2023). https://doi.org/10.1557/s43581-023-00062-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43581-023-00062-2

Keywords

Navigation