Skip to main content
Log in

Oriented MFI films for gas phase separation, catalysis, and sensing: A review of crystal growth, design, and function enabling

  • MRS 50th Anniversary Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

ZSM-5 (Zeolite Socony Mobil - Type 5) is a crystalline aluminosilicate with an MFI (Mobile-type Five) framework with anisotropic distribution of pores and channels along different orientations. A secondary growth method with assistance of pre-deposited seeds has been dominantly utilized to fabricate oriented MFI films to provide the capacity and flexibility of controlling the membrane crystal orientation. Functionally, the straight channels along the b-axis favor mass transfer, while the sinusoidal channels along the a-axis are preferred for product selectivity. The orientation of MFI films affects their application performance in separation, catalytic activities, and selectivities, as well as chemical sensing. In this review, the crystallinity, nanostructure, porosity, and orientation control during the MFI film formation have been surveyed for the latest literature focusing on synthetic approaches, crystal structure designs, and parameter adjustment strategies for tailoring the MFI film structure and orientation distribution. The associated functional enablings have been reviewed and discussed including example devices for capture and separation of various gases such as CO2, hydrocarbons (HCs), value-added chemical, and fuel transformation through shape selective catalysis, as well as chemical sensing, as a result of oriented films with different structural and crystalline characteristics. Looking ahead, more research attention is expected for structural and orientational tailoring of MFI and other zeolite films, membranes, and other functional devices for future applications in gas phase sorption, separation, catalysis, sensing, and beyond.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

(b) Credit: Dr. Semih Eser © Penn State is licensed under CC BY-NC-SA 4.0

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. J. Weitkamp, Solid State Ion. 131, 175–188 (2000)

    CAS  Google Scholar 

  2. J. Cejka, A. Corma, S. Zones, Zeolites and catalysis: synthesis, reactions and applications (John Wiley & Sons, 2010)

    Google Scholar 

  3. V. Marturano, P. Cerruti, V. Ambrogi, Phys. Sci. Rev. (2017). https://doi.org/10.1515/psr-2016-0130

    Article  Google Scholar 

  4. M. Moshoeshoe, M.S. Nadiye-Tabbiruka, V. Obuseng, Am. J. Mater. Sci. 7, 196–221 (2017)

    Google Scholar 

  5. Y. Ji, H. Yang, W. Yan, Catalysts (2017). https://doi.org/10.3390/catal7120367

    Article  Google Scholar 

  6. A. Javdani, J. Ahmadpour, F. Yaripour, Microporous Mesoporous Mater. 284, 443–458 (2019)

    CAS  Google Scholar 

  7. J. Lee, J.R. Theis, E.A. Kyriakidou, Appl Catal B. 243, 397–414 (2019)

    CAS  Google Scholar 

  8. Z. Lai, G. Bonilla, I. Diaz, J.G. Nery, K. Sujaoti, M.A. Amat, E. Kokkoli, O. Terasaki, R.W. Thompson, M. Tsapatsis, Science 1979(300), 456–460 (2003)

    Google Scholar 

  9. N. Wang, W. Sun, Y. Hou, B. Ge, L. Hu, J. Nie, W. Qian, F. Wei, J Catal. 360, 89–96 (2018)

    CAS  Google Scholar 

  10. M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature 461, 246 (2009)

    CAS  Google Scholar 

  11. J. Caro, M. Noack, P. Kölsch, R. Schäfer, Microporous Mesoporous Mater. 38, 3–24 (2000)

    CAS  Google Scholar 

  12. R. Bedard, C. Liu, Annu Rev Mater Res. 48, 83–110 (2018)

    CAS  Google Scholar 

  13. R. Aiello, F. Crea, F. Testa, A. SpantiGattuso, Stud Surf Sci Catal. 125, 29–36 (1999)

    CAS  Google Scholar 

  14. Z. Wang, Y. Yan, Microporous Mesoporous Mater. 48, 229–238 (2001)

    CAS  Google Scholar 

  15. Z. Wang, Y. Yan, Chem. Mater. 13, 1101–1107 (2001)

    CAS  Google Scholar 

  16. A. Mitra, Z. Wang, T. Cao, H. Wang, L. Huang, Y. Yan, J Electrochem Soc. 149, B472 (2002)

    CAS  Google Scholar 

  17. S. Li, Z. Li, K.N. Bozhilov, Z. Chen, Y. Yan, J. Am. Chem. Soc. 126, 10732–10737 (2004)

    CAS  Google Scholar 

  18. R. Lai, Y. Yan, G.R. Gavalas, Microporous Mesoporous Mater. 37, 9–19 (2000)

    CAS  Google Scholar 

  19. G. Xomeritakis, S. Nair, M. Tsapatsis, Microporous Mesoporous Mater. 38, 61–73 (2000)

    CAS  Google Scholar 

  20. J.M. Halls, C.A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti, A.B. Holmes, B. Kwang Ha, Y.-J. Lee, H. Ju Lee, K. Byung Yoon, K.B. Yoon, K. Ha, Y. Lee, H.J. Lee, Electron. Excitation Energy Transfer Condensed Matter. 395, 129 (1998)

    Google Scholar 

  21. O. Öhrman, J. Hedlund, V. Msimang, K. Möller, Microporous Mesoporous Mater. 78, 199–208 (2005)

    Google Scholar 

  22. M.A. Ulla, R. Mallada, J. Coronas, L. Gutierrez, E. Miró, J. Santamaría, Appl Catal A Gen. 253, 257–269 (2003)

    CAS  Google Scholar 

  23. A. Gouzinis, M. Tsapatsis, Chem. Mater. 10, 2497–2504 (1998)

    CAS  Google Scholar 

  24. G. Xomeritakis, A. Gouzinis, S. Nair, T. Okubo, M. He, R.M. Overney, M. Tsapatsis, Chem. Eng. Sci. 54, 3521–3531 (1999)

    CAS  Google Scholar 

  25. G. Bonilla, D.G. Vlachos, M. Tsapatsis, Microporous Mesoporous Mater. 42, 191–203 (2001)

    CAS  Google Scholar 

  26. J. Choi, S. Ghosh, Z. Lai, M. Tsapatsis, Angew. Chem. 118, 1172–1176 (2006)

    Google Scholar 

  27. A. Zampieri, A. Dubbe, W. Schwieger, A. Avhale, R. Moos, Microporous Mesoporous Mater. 111, 530–535 (2008)

    CAS  Google Scholar 

  28. Y. Liu, Y. Li, W. Yang, J Am Chem Soc. 132, 1768–1769 (2010)

    CAS  Google Scholar 

  29. X. Li, Y. Peng, Z. Wang, Y. Yan, CrystEngComm 13, 3657–3660 (2011)

    CAS  Google Scholar 

  30. K.V. Agrawal, B. Topuz, T.C.T. Pham, T.H. Nguyen, N. Sauer, N. Rangnekar, H. Zhang, K. Narasimharao, S.N. Basahel, L.F. Francis, C.W. Macosko, S. Al-Thabaiti, M. Tsapatsis, K.B. Yoon, Adv. Mater. 27, 3243–3249 (2015)

    CAS  Google Scholar 

  31. Z.L. Cheng, Z. Liu, S. Wang, J Nanosci Nanotechnol. 16, 1155–1159 (2016)

    CAS  Google Scholar 

  32. Y. Peng, R. Xu, J Mater Sci (2019). https://doi.org/10.1007/s10853-019-03971-1

    Article  Google Scholar 

  33. Z. Lai, M. Tsapatsis, J.P. Nicolich, Adv Funct Mater. 14, 716–729 (2004)

    CAS  Google Scholar 

  34. T. Lee, J. Choi, M. Tsapatsis, J Memb Sci. 436, 79–89 (2013)

    CAS  Google Scholar 

  35. A. Van der Drift, Philips Res. Rep. 22, 267 (1967)

    Google Scholar 

  36. T.C.T. Pham, H.S. Kim, K.B. Yoon, Science 1979(334), 1533–1538 (2011)

    Google Scholar 

  37. A. Wu, C. Tang, S. Zhong, B. Wang, J. Zhou, R. Zhou, Sep Purif Technol. 214, 51–60 (2019)

    CAS  Google Scholar 

  38. E. Kim, J. Choi, M. Tsapatsis, Microporous Mesoporous Mater. 170, 1–8 (2013)

    CAS  Google Scholar 

  39. K.B. Yoon, Acc Chem Res. 40, 29–40 (2007)

    CAS  Google Scholar 

  40. S.M. Mirfendereski, T. Mazaheri, J. Ind. Eng. Chem. 94, 240–252 (2021)

    CAS  Google Scholar 

  41. J. Choi, H.-K. Jeong, M.A. Snyder, J.A. Stoeger, R.I. Masel, M. Tsapatsis, Science 1979(325), 590–593 (2009)

    Google Scholar 

  42. H. Liu, G. Liu, X. Zhang, D. Zhao, L. Wang, Microporous Mesoporous Mater. 244, 164–170 (2017)

    CAS  Google Scholar 

  43. D. Schwalbe-Koda, S. Kwon, C. Paris, E. Bello-Jurado, Z. Jensen, E. Olivetti, T. Willhammar, A. Corma, Y. Román-Leshkov, M. Moliner, R. Gómez-Bombarelli, Science 1979(374), 308–315 (2021)

    Google Scholar 

  44. Y. Tian, B. Zhang, S. Gong, L. Wang, X. Zhang, C. Qiao, G. Liu, Microporous Mesoporous Mater. 310, 110598 (2021)

    CAS  Google Scholar 

  45. X. Xiao, B. Sun, P. Wang, X. Fan, L. Kong, Z. Xie, B. Liu, Z. Zhao, Microporous Mesoporous Mater. 330, 111621 (2022)

    CAS  Google Scholar 

  46. D. Fu, J.E. Schmidt, Z. Ristanović, A.D. Chowdhury, F. Meirer, B.M. Weckhuysen, Angew. Chem. Int. Ed. 56, 11217–11221 (2017)

    CAS  Google Scholar 

  47. D. Fu, O. Van Der Heijden, K. Stanciakova, J.E. Schmidt, B.M. Weckhuysen, Angew. Chem. Int. Ed. 59, 15502–15506 (2020)

    CAS  Google Scholar 

  48. J. Lan, H. Saulat, H. Wu, L. Li, J. Yang, J. Lu, Y. Zhang, Microporous Mesoporous Mater. 299, 110128 (2020)

    CAS  Google Scholar 

  49. M. Zhou, D. Korelskiy, P. Ye, M. Grahn, J. Hedlund, Angew. Chem. Int. Ed. 53, 3492–3495 (2014)

    CAS  Google Scholar 

  50. X. Lu, Y. Peng, Z. Wang, Y. Yan, Chem. Commun. 51, 11076–11079 (2015)

    CAS  Google Scholar 

  51. X. Yu, C. Zhou, X. Chen, P. Gao, M. Qiu, W. Xue, C. Yang, H. Zhao, H. Liu, Z. Liu, Y. Sun, ChemCatChem 10, 5619–5626 (2018)

    CAS  Google Scholar 

  52. Z. Shan, H. Wang, X. Meng, S. Liu, L. Wang, C. Wang, F. Li, J.P. Lewis, F.-S. Xiao, Chem. Commun. 47, 1048–1050 (2011)

    CAS  Google Scholar 

  53. Z. Liu, D. Wu, S. Ren, X. Chen, M. Qiu, X. Wu, C. Yang, G. Zeng, Y. Sun, ChemCatChem 8, 3317–3322 (2016)

    CAS  Google Scholar 

  54. L. Yan, Z. Xiaozhao, P. Xinmei, J. Yinying, M. Xiangju, Z. Xiaoming, G. Xionghou, X. Feng-Shou, ChemCatChem 5, 1517–1523 (2013)

    Google Scholar 

  55. X. Qian, G. Bai, P. He, Z. Fei, Q. Liu, Z. Zhang, X. Chen, J. Tang, M. Cui, X. Qiao, Ind Eng Chem Res. 57, 16875–16883 (2018)

    CAS  Google Scholar 

  56. F. Banihashemi, J.Y.S. Lin, J Memb Sci. 652, 120492 (2022)

    CAS  Google Scholar 

  57. M. Ji, G. Liu, L. Wang, X. Zhang, Fuel 134, 180–188 (2014)

    CAS  Google Scholar 

  58. J. Wu, X. Meng, R. Chu, S. Yu, Y. Wan, C. Song, G. Zhang, T. Zhao, Front Chem. 7, 746 (2019)

    CAS  Google Scholar 

  59. X. Ma, H. Wang, H. Wang, J.O. Brien-Abraham, Y.S. Lin, J. Membr. Sci. 477, 41–48 (2015)

    CAS  Google Scholar 

  60. X. Zeng, X. Hu, H. Song, G. Xia, Z.Y. Shen, R. Yu, M. Moskovits, Microporous Mesoporous Mater. 323, 111262 (2021)

    CAS  Google Scholar 

  61. Z. Liu, T. Wakihara, C. Anand, S.H. Keoh, D. Nishioka, Y. Hotta, T. Matsuo, T. Takewaki, T. Okubo, Microporous Mesoporous Mater. 223, 140–144 (2016)

    CAS  Google Scholar 

  62. K. Ueno, H. Negishi, T. Okuno, H. Tawarayama, S. Ishikawa, M. Miyamoto, S. Uemiya, Y. Oumi, Microporous Mesoporous Mater. 289, 109645 (2019)

    CAS  Google Scholar 

  63. X. Shao, Y. Zhang, J. Li, Z. Wang, X. Zhang, L. Wang, W. Yuan, H. Wang, Chem. Commun. 57, 10624–10627 (2021)

    CAS  Google Scholar 

  64. Y. Zhang, W. Zhang, J. Zhang, Z. Dong, X. Zhang, S. Ding, RSC Adv. 8, 31979–31983 (2018)

    CAS  Google Scholar 

  65. H. Dai, Y. Shen, T. Yang, C. Lee, D. Fu, A. Agarwal, T.T. Le, M. Tsapatsis, J.C. Palmer, B.M. Weckhuysen, P.J. Dauenhauer, X. Zou, J.D. Rimer, Nat. Mater. 19, 1074–1080 (2020)

    CAS  Google Scholar 

  66. N. Wang, W. Qian, K. Shen, C. Su, F. Wei, Chem. Commun. 52, 2011–2014 (2016)

    CAS  Google Scholar 

  67. N. Kosinov, J. Gascon, F. Kapteijn, E.J.M. Hensen, J Membr. Sci. 499, 65–79 (2016)

    CAS  Google Scholar 

  68. S. Sircar, A.L. Myers, Handbook of zeolite science and technology (Marcell Dekker Inc, 2003), p.1063

    Google Scholar 

  69. G. Xomeritakis, Z. Lai, M. Tsapatsis, Ind. Eng. Chem. Res. 40, 544–552 (2001)

    CAS  Google Scholar 

  70. J. Choi, S. Ghosh, L. King, M. Tsapatsis, Adsorption 12, 339–360 (2006)

    CAS  Google Scholar 

  71. D.G. Hay, H. Jaeger, K.G. Wilshier, Zeolites 10, 571–576 (1990)

    CAS  Google Scholar 

  72. A. Iwasaki, M. Hirata, I. Kudo, T. Sano, Zeolites 16, 35–41 (1996)

    CAS  Google Scholar 

  73. D. Kim, M.Y. Jeon, B.L. Stottrup, M. Tsapatsis, Angew. Chem. Int. Ed. 57, 480–485 (2018)

    CAS  Google Scholar 

  74. X. Lu, Y. Peng, Z. Wang, Y. Yan, Microporous Mesoporous Mater. 230, 49–57 (2016)

    CAS  Google Scholar 

  75. Y. Liu, Y. Li, R. Cai, W. Yang, Chem. Commun. 48, 6782–6784 (2012)

    CAS  Google Scholar 

  76. F. Banihashemi, L. Meng, A.A. Babaluo, Y.S. Lin, Ind Chem Res Eng. (2018). https://doi.org/10.1021/acs.iecr.8b01373

    Article  Google Scholar 

  77. C. Yang, M. Qiu, S. Hu, X. Chen, G. Zeng, Z. Liu, Y. Sun, Microporous Mesoporous Mater. 231, 110–116 (2016)

    CAS  Google Scholar 

  78. M. Bjørgen, S. Svelle, F. Joensen, J. Nerlov, S. Kolboe, F. Bonino, L. Palumbo, S. Bordiga, U. Olsbye, J Catal. 249, 195–207 (2007)

    Google Scholar 

  79. Q. Wu, X. Liu, L. Zhu, L. Ding, P. Gao, X. Wang, S. Pan, C. Bian, X. Meng, J. Xu, F. Deng, S. Maurer, U. Müller, F.-S. Xiao, J. Am. Chem. Soc. 137, 1052–1055 (2015)

    CAS  Google Scholar 

  80. M. Ji, G. Liu, C. Chen, L. Wang, X. Zhang, S. Hu, X. Ma, Appl. Catal. A Gen. 482, 8–15 (2014)

    CAS  Google Scholar 

  81. D. Fu, A. Lucini Paioni, C. Lian, O. van der Heijden, M. Baldus, B.M. Weckhuysen, Angew. Chem. Int. Ed. 59, 20024–20030 (2020)

    CAS  Google Scholar 

  82. K. Shen, W. Qian, N. Wang, C. Su, F. Wei, J. Am. Chem. Soc. 135, 15322–15325 (2013)

    CAS  Google Scholar 

  83. C. Wang, L. Zhang, X. Huang, Y. Zhu, G. Li, Q. Gu, J. Chen, L. Ma, X. Li, Q. He, J. Xu, Q. Sun, C. Song, M. Peng, J. Sun, D. Ma, Nat Commun. 10, 4348 (2019)

    Google Scholar 

  84. D.J. Wales, J. Grand, V.P. Ting, R.D. Burke, K.J. Edler, C.R. Bowen, S. Mintova, A.D. Burrows, Chem Soc Rev. 44, 4290–4321 (2015)

    CAS  Google Scholar 

  85. C. Algieri, E. Drioli, Sep Purif Technol. 278, 119295 (2021)

    Google Scholar 

  86. M. Klusáčková, K. Nesměrák, Monatshefte für Chemie— Chemical Monthly. 149, 1503–1513 (2018)

    Google Scholar 

  87. W.L. Rauch, M. Liu, J Mater Sci. 38, 4307–4317 (2003)

    CAS  Google Scholar 

  88. S. Li, X. Wang, D. Beving, Z. Chen, A. Yan, J. Am. Chem. Soc. 126, 4122–4123 (2004)

    CAS  Google Scholar 

  89. Y. Sun, J. Wang, H. Du, X. Li, C. Wang, T. Hou, J. Alloys Compd. 868, 159140 (2021)

    CAS  Google Scholar 

  90. Y. Sun, T. Hou, S. Sun, H. Du, S. Fu, J. Wang, Appl. Surf. Sci. 604, 154511 (2022)

    CAS  Google Scholar 

  91. D. Jadsadapattarakul, C. Thanachayanont, J. Nukeaw, T. Sooknoi, Sens Actuators B Chem. 144, 73–80 (2010)

    CAS  Google Scholar 

  92. S. Dungey, A. Afonja, D. W. Lewis, R. Binions, I. P. Parkin, T. Paraskeva, D. E. Williams, In: Studies in Surface Science and Catalysis, vol. 174 (Elsevier, 2008), pp. 549–554.

  93. T. Baimpos, L. Gora, V. Nikolakis, D. Kouzoudis, Sens Actuators A Phys. 186, 21–31 (2012)

    CAS  Google Scholar 

  94. L. Gora, J. Kuhn, T. Baimpos, V. Nikolakis, F. Kapteijn, E.M. Serwicka, Analyst. 134, 2118–2122 (2009)

    CAS  Google Scholar 

  95. W.G. Cui, Y.T. Li, L. Yu, H. Zhang, T.L. Hu, ACS Appl. Mater. Interfaces. 13, 18693–18703 (2021)

    CAS  Google Scholar 

  96. B. Li, K.M. Kwok, H.C. Zeng, ACS Appl. Mater. Interfaces. 13, 20524–20538 (2021)

    CAS  Google Scholar 

  97. K. Hirai, K. Sumida, M. Meilikhov, N. Louvain, M. Nakahama, H. Uehara, S. Kitagawa, S. Furukawa, J. Mater. Chem. C Mater. 2, 3336–3344 (2014)

    CAS  Google Scholar 

  98. J. Weng, X. Lu, P.X. Gao, Catalysts 7, 253 (2017)

    Google Scholar 

  99. S. Du, W. Tang, X. Lu, S. Wang, Y. Guo, P.X. Gao, Adv. Mater. Interfaces. 5, 1700730 (2018)

    Google Scholar 

  100. S. Wang, Y. Wu, R. Miao, M. Zhang, X. Lu, B. Zhang, A. Kinstler, Z. Ren, Y. Guo, T. Lu, S.L. Suib, P.X. Gao, CrystEngComm 19, 5128–5136 (2017)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from the US Department of Energy and the US National Science Foundation. J. Weng was partially supported by the Thermo Fisher Scientific Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pu-Xian Gao.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, J., Zhao, B., Suib, S.L. et al. Oriented MFI films for gas phase separation, catalysis, and sensing: A review of crystal growth, design, and function enabling. MRS Communications 13, 725–739 (2023). https://doi.org/10.1557/s43579-023-00395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00395-6

Keywords

Navigation