Skip to main content
Log in

Experimental investigation on electrochemical behavior of NiS reinforced with rGO(1%, 3%, and 5%) composites synthesized by electrodeposition method for energy storage and green vehicle applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A composite of NiS nanoparticles reinforced with rGO was synthesized using the electrodeposition method. NiS composites with different rGO concentrations (1%, 3%, and 5%) were synthesized. NiS/5%rGO composite exhibits high capacitance and cycling stability. The composites' properties, including structure, morphology, composition, and electrochemical behavior were compared to pure NiS. XRD patterns confirmed the crystal structure and phase of NiS and NiS/rGO composites. SEM images show the hierarchical structure of NiS and the sheet-like morphology of GO. Integration of NiS nanoparticles onto rGO nanosheets is confirmed by Raman study. EPMA and HR-TEM techniques revealed the elemental composition and particle distribution of the composites. The increasing % of rGO increased the electrode's specific surface area and current-carrying ability, enabling efficient charging and discharging processes due to rapid electron conduction across the underlying graphene layers. This enhancement in the electrochemical behavior of NiS/5%rGO composite can be attributed to energy storage and green vehicle applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

All the data presented in the manuscript are collected with field standards.

Code availability

Not applicable.

References

  1. P. Haidl, A. Buchroithner, B. Schweighofer, M. Bader, H. Wegleiter, Sustainability. (2019). https://doi.org/10.3390/su11236731

    Article  Google Scholar 

  2. M.K. Hasan, Md. Mahmud, A.K.M. Ahasan Habib, S.M.A. Motakabber, S. Islam, J. Energy Storage. (2021). https://doi.org/10.1016/j.est.2021.102940

    Article  Google Scholar 

  3. A. Gulzari, Y. Wang, V. Prybutok, J. Retail. Consum. Serv. (2021). https://doi.org/10.1016/j.jretconser.2021.102877

    Article  Google Scholar 

  4. K. Khan, A.K. Tareen, M. Aslam, A. Mahmood, Y. Zhang, Z. Ouyang, Z. Guo, H. Zhang, Prog. Solid. State Ch. (2020). https://doi.org/10.1016/j.progsolidstchem.2019.100254

    Article  Google Scholar 

  5. L. Kouchachvili, W. Yaïci, E. Entchev, J. Power. Sources (2018). https://doi.org/10.1016/j.jpowsour.2017.11.040

    Article  Google Scholar 

  6. X. Zhang, F. Ran, H. Fan, Y. Tan, L. Zhao, X. Li, L. Kong, L. Kang, J. Energy Chem. (2014). https://doi.org/10.1016/S2095-4956(14)60121-2

    Article  Google Scholar 

  7. A.I. Inamdar, J. Kim, Y. Jo, H. Woo, S. Cho, S.M. Pawar, S. Lee et al., Sol. Energy Mater. Sol. Cells (2017). https://doi.org/10.1016/j.solmat.2017.03.006

    Article  Google Scholar 

  8. D. Xia, H. Chen, J. Jiang, L. Zhang, Y. Zhao, D. Guo, J. Yu, Electrochim. Acta (2015). https://doi.org/10.1016/j.electacta.2015.01.018

    Article  Google Scholar 

  9. T. Wang, H.C. Chen, F. Yu, X.S. Zhao, H. Wang, Energy Stor. Mater. (2019). https://doi.org/10.1016/j.ensm.2018.09.007

    Article  Google Scholar 

  10. J. Yu, F. Xie, Z. Wu, T. Huang, J. Wu, D. Yan, C. Huang, L. Li, Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2017.11.008

    Article  Google Scholar 

  11. X. Li, Z. Wang, L. Guo, D. Han, B. Li, Z. Gong, Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2018.01.156

    Article  PubMed  Google Scholar 

  12. S. Sundriyal, V. Shrivastav, S. Mishra, A. Deep, Int. J. Hydrogen Energy (2020). https://doi.org/10.1016/j.ijhydene.2020.08.075

    Article  Google Scholar 

  13. J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S.A. Suthanthiraraj, R. Jayavel, D. Nedumaran, J. Inorg. Organomet. Polym. Mater. (2018). https://doi.org/10.1007/s10904-018-0873-0

    Article  Google Scholar 

  14. Y. Liu, D. Zhao, H. Liu, A. Umar, X. Wu, Chin. Chem. Lett. (2019). https://doi.org/10.1016/j.cclet.2018.12.024

    Article  PubMed  PubMed Central  Google Scholar 

  15. A. Rajapriya, S. Keerthana, N. Ponpandian, in Nanostructured Materials for Supercapacitors. ed. by S. Thomas, A.B. Gueye (Springer, Guptapp, 2022), p.375

    Chapter  Google Scholar 

  16. Y. Dahiya, M. Hariram, M. Kumar, A. Jain, D. Sarkar, Coord. Chem. Rev. (2022). https://doi.org/10.1016/j.ccr.2021.214265

    Article  Google Scholar 

  17. B. Wang, J.S. Chen, Z. Wang, S. Madhavi, X.W. Lou, Adv. Energy Mater. (2012). https://doi.org/10.1002/aenm.201200008

    Article  Google Scholar 

  18. T. Liu, C. Jiang, B. Cheng, W. You, Yu. Jiaguo, J. Power. Sources (2017). https://doi.org/10.1016/j.jpowsour.2017.05.100

    Article  Google Scholar 

  19. H. Peçenek, F.K. Dokan, M.S. Onses, E. Yılmaz, E. Sahmetlioglu, Mater. Res. Bull. (2022). https://doi.org/10.1016/j.materresbull.2022.111745

    Article  Google Scholar 

  20. J. Zhao, Y. Tian, A. Liu, L. Song, Z. Zhao, Mater. Sci. Semicond. (2019). https://doi.org/10.1016/j.mssp.2019.02.024

    Article  Google Scholar 

  21. C. Huang, A. Gao, F. Yi, Y. Wang, D. Shu, Y. Liang, Z. Zhu, J. Ling, J. Hao, J. Chem. Eng. (2021). https://doi.org/10.1016/j.cej.2021.129643

    Article  Google Scholar 

  22. H. Yan, K. Zhu, X. Liu, Y. Wang, Y. Wang, D. Zhang, Y. Lu, T. Peng, Y. Liu, Y. Luo, RSC Adv. (2020). https://doi.org/10.1039/C9RA09486E

    Article  PubMed  PubMed Central  Google Scholar 

  23. A. Subramanian, D. Punnoose, V. Raman, C.V.V.M. Gopi, S. Srinivasa Rao, M.A. Khan, H.-J. Kim, Mater. Lett. (2018). https://doi.org/10.1016/j.matlet.2018.07.118

    Article  Google Scholar 

  24. Y. Ruan, C. Wang, J. Jiang, J. Mater. Chem. A. (2016). https://doi.org/10.1039/C6TA05104A

    Article  Google Scholar 

  25. C. Zhu, X. Zhao, Y. Xu et al., Sci. China Mater. (2023). https://doi.org/10.1007/s40843-022-2430-6

    Article  Google Scholar 

  26. C. Peng, S. Zhang, H. Yang, B. Sheng, R. Xu, Q. Wang, Y. Yu, ACS Nano (2020). https://doi.org/10.1021/acsnano.0c01681

    Article  PubMed  Google Scholar 

  27. C. Zhou, Y. Zhang, Z. Liu et al., Sci. China Mater. (2022). https://doi.org/10.1007/s40843-022-2073-y

    Article  PubMed  PubMed Central  Google Scholar 

  28. C. Zhang, F. Han, F. Wang et al., Energy Stor. Mater. (2020). https://doi.org/10.1016/j.ensm.2019.08.018

    Article  Google Scholar 

  29. S. Zhou, Y. Huang, Xu. Longxuan, W. Zheng, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.08.281

    Article  Google Scholar 

  30. H. Pang, C. Wei, X. Li, G. Li, Y. Ma, S. Li, J. Chen, J. Zhang, Sci. Rep. (2014). https://doi.org/10.1038/srep03577

    Article  PubMed  PubMed Central  Google Scholar 

  31. L. Cheng, Hu. Yiyang, L. Ling, D. Qiao, S. Cui, Z. Jiao, Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2018.07.013

    Article  Google Scholar 

  32. S.M. de la Parra-Arciniega, N.A. García-Gómez, D.I. Garcia-Gutierrez, P. Salinas-Estevané, E.M. Sánchez, Mater. Sci. Semicond. (2014). https://doi.org/10.1016/j.mssp.2014.02.019

    Article  Google Scholar 

  33. J. ElNady, A. Shokry, M. Khalil, S. Ebrahim, A.M. Elshaer, M. Anas, Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-07483-y

    Article  Google Scholar 

  34. M. Zhang, Y. Chen, D. Yang, J. Li, J. Energy Storage. (2020). https://doi.org/10.1016/j.est.2020.101363

    Article  Google Scholar 

  35. X.-F. Hao, Y. Yan, L.-G. Gao, Mu. Wen-Sheng, Ce. Hao, Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2017.04.128

    Article  Google Scholar 

  36. S. Islam, M.M. Mia, S.S. Shah, S. Naher, M.N. Shaikh, M.A. Aziz, A.J.S. Ahammad, J. Chem. Soc. Jpn. (2022). https://doi.org/10.1002/tcr.202200013

    Article  Google Scholar 

  37. D. Zhang, C. Tan, W. Zhang, W. Pan, Qi. Wang, Le. Li, Molecules (2022). https://doi.org/10.3390/molecules27030716

    Article  PubMed  PubMed Central  Google Scholar 

  38. G. Liu, Z. Xiong, L. Yang, H. Shi, D. Fang, M. Wang, P. Shao, X. Luo, Sci. Total. Environ. (2021). https://doi.org/10.1016/j.scitotenv.2021.146301

    Article  PubMed  PubMed Central  Google Scholar 

  39. J. Sun, L. Guo, X. Sun, J. Zhang, L. Hou, Li. Li, S. Yang, C. Yuan, Batter. Supercaps. (2019). https://doi.org/10.1002/batt.201900021

    Article  Google Scholar 

  40. D. Majumdar, M. Mandal, S.K. Bhattacharya, ChemElectroChem (2019). https://doi.org/10.1002/celc.201801761

    Article  Google Scholar 

  41. M. Zhu, J. Tang, W. Wei, S. Li, Mater. Chem. Front. (2020). https://doi.org/10.1039/C9QM00700H

    Article  Google Scholar 

  42. G.-C. Li, P.-F. Liu, R. Liu, M. Liu, K. Tao, S.-R. Zhu, Wu. Meng-Ke, F.-Y. Yi, L. Han, Dalton Trans. (2016). https://doi.org/10.1039/C6DT01791F

    Article  PubMed  PubMed Central  Google Scholar 

  43. A. Mishra, N.P. Shetti, S. Basu, K. Raghava Reddy, T.M. Aminabhavi, ChemElectroEchem. (2019). https://doi.org/10.1002/celc.201901122

    Article  Google Scholar 

  44. Di. Chen, K. Jiang, T. Huang, G. Shen, Adv. Mater. (2020). https://doi.org/10.1002/adma.201901806

    Article  PubMed  PubMed Central  Google Scholar 

  45. P. Lin, Q. She, B. Hong, X. Liu, Y. Shi, Z. Shi, M. Zheng, Q. Dong, J. Electrochem. Soc. (2010). https://doi.org/10.1149/1.3425624

    Article  Google Scholar 

  46. S. Li, M. Cai, C. Wang et al., Adv Fiber Mater. (2023). https://doi.org/10.1007/s42765-022-00253-5

    Article  PubMed  PubMed Central  Google Scholar 

  47. M. Cai, Y. Liu, C. Wang, W. Lin, S. Li, Sep. Purif. Technol. (2023). https://doi.org/10.1016/j.seppur.2022.122401

    Article  Google Scholar 

  48. S. Li, M. Cai, Y. Liu, C. Wang, R. Yan, X. Chen, Adv. Powder. Mater. (2023). https://doi.org/10.1016/j.apmate.2022.100073

    Article  Google Scholar 

  49. S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, X. Li, Mater. Sci. Technol. (2023). https://doi.org/10.1016/j.jmst.2023.05.009

    Article  Google Scholar 

  50. S. Li, C. Wang, Y. Liu, Y. Liu, M. Cai, W. Zhao, X. Duan, J. Chem. Eng. (2023). https://doi.org/10.1016/j.cej.2022.140943

    Article  Google Scholar 

  51. S. Li, M. Cai, Y. Liu, C. Wang, K. Lv, X. Chen, J. Chin. Catal. (2022). https://doi.org/10.1016/S1872-2067(22)64106-8

    Article  Google Scholar 

  52. C. Wang, R. Yan, M. Cai, Y. Liu, S. Li, Appl. Surf. Sci. (2023). https://doi.org/10.1016/j.apsusc.2022.155346

    Article  Google Scholar 

  53. S. Li, C. Wang, K. Dong, P. Zhang, X. Chen, X. Li, J. Chin. Catal. (2023). https://doi.org/10.1016/S1872-2067(23)64479-1

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The idea was conceptualized by PPR and NR. The methodology was developed by GBMR. Formal analysis and investigation were conducted by NR and GBMR. Drafted the original writing by GBMR. Reviewed and edited by KY. Supervision was provided throughout the process by NR. All authors read and approved the final manuscript.

Corresponding author

Correspondence to N. Ramadoss.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest, and all authors have seen and approved the submitted manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, P.P., Raj, G.B.M., Ramadoss, N. et al. Experimental investigation on electrochemical behavior of NiS reinforced with rGO(1%, 3%, and 5%) composites synthesized by electrodeposition method for energy storage and green vehicle applications. Journal of Materials Research 39, 750–761 (2024). https://doi.org/10.1557/s43578-023-01263-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01263-8

Keywords

Navigation