Skip to main content
Log in

The abundant oxygen vacancy on CuInS2/BiOBr composite catalyst cooperated with the double Fenton system to perform efficient heterogeneous Fenton degradation of levofloxacin

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we prepared a series of heterogeneous Fenton catalytic materials x-CuInS2/BiOBr(x = 10–60 wt%, x-CIS/BiOBr) for the degradation of levofloxacin (LVF) by in- situ hydrothermal synthesis. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) show that the x-CIS/BiOBr heterogeneous Fenton catalyst has abundant oxygen vacancy (OVs). The experimental results showed that the degradation rate of LVF by 40%-CIS/BiOBr reached 94.1% within 60 min, and the apparent rate constant was 0.0439 min−1, 8.92 times that of CuInS2 and 10.4 times that of BiOBr, respectively. The BET-specific surface area and pore volume were approximately 10 times and 7 times that of pure CuInS2 and BiOBr. Based on the characterization and quenching experiments results, the catalytic mechanism of synergistic interaction between the dual Fenton system (In3+/In+ and Cu+/Cu2+) and OVs was proposed, the possible degradation pathways of LVF were analyzed, and the toxicity of its intermediates was evaluated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9.
Figure 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. T. Li, Z. Wang, J. Guo, C. de la Fuente-Nunez, J. Wang, B. Han, H. Tao, J. Liu, X. Wang, Sci. Total. Environ. 860, 160461 (2023)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. S. Hussain, M. Naeem, M.N. Chaudhry, M.A. Iqbal, Exp. Health. 8, 107–115 (2016)

    Article  CAS  Google Scholar 

  3. H. Gu, W. Xie, A. Du, D. Pan, Z. Guo, Catal. Rev. Sci. Eng. 65, 569–619 (2023)

    Article  CAS  Google Scholar 

  4. Y. Fu, Z. Yang, Y. Xia, Y. Xing, X. Gui, Energy Sources Part A 43, 225–234 (2021)

    Article  CAS  Google Scholar 

  5. O. Falyouna, I. Maamoun, K. Bensaida, A. Tahara, Y. Sugihara, O. Eljamal, J. Colloid Interface Sci. 605, 813–827 (2022)

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Y.J. Ben, C.X. Fu, M. Hu, L. Liu, M.H. Wong, C.M. Zheng, Environ. Res. 169, 483–493 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. Z.B. Lin, T. Yuan, L. Zhou, S. Cheng, X. Qu, P. Lu, Q.Y. Feng, Environ. Geochem. Health 43, 1741–1758 (2021)

    Article  CAS  PubMed  Google Scholar 

  8. D. Ding, B. Wang, X.A. Zhang, J.X. Zhang, H.H. Zhang, X.X. Liu, Z. Gao, Z.L. Yu, Ecotox. Environ. Safe. 254, 48 (2023)

    Article  Google Scholar 

  9. X. Zhu, Y. Wang, D. Zhou, J. Soils Sediments 14, 1350–1358 (2014)

    Article  CAS  Google Scholar 

  10. M.R. Abukhadra, A.S. Mohamed, A.M. El-Sherbeeny, A.T.A. Soliman, ACS Omega 5, 26195–26205 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Z. Geng, M. Yang, X. Qi, Z.Y. Li, X. Yang, M.X. Huo, J.C. Crittenden, J. Chem. Technol. Biotechnol. 94, 1660–1669 (2019)

    Article  CAS  Google Scholar 

  12. V. Homem, L. Santos, J. Environ. Manage. 92, 2304–2347 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. G. Lofrano, R. Pedrazzani, G. Libralato, M. Carotenuto, Curr. Org. Chem. 21, 1054–1067 (2017)

    Article  CAS  Google Scholar 

  14. R. Anjali, S. Shanthakumar, J. Environ. Manage. 246, 51–62 (2019)

    Article  CAS  PubMed  Google Scholar 

  15. K. Ikehata, N.J. Naghashkar, M.G. Ei-Din, Ozone-Sci. Eng. 28, 353–414 (2006)

    Article  CAS  Google Scholar 

  16. J.-H. Wu, Y. Li, X. Liu, F. Liu, S.-J. Ma, J.-J. You, X.-Q. Zhu, X.-X. Zhong, Z.-X. Lin, Environ. Technol. 43, 1561–1572 (2022)

    Article  CAS  PubMed  Google Scholar 

  17. M. Cheng, C. Lai, Y. Liu, G. Zeng, D. Huang, C. Zhang, L. Qin, L. Hu, C. Zhou, W. Xiong, Coord. Chem. Rev. 368, 80–92 (2018)

    Article  CAS  Google Scholar 

  18. D.A. Nichela, A.M. Berkovic, M.R. Costante, M.P. Juliarena, F.S.G. Einschlag, Chem. Eng. J. 228, 1148–1157 (2013)

    Article  CAS  Google Scholar 

  19. L.L. Zhang, L. Lyu, Y.L. Nie, C. Hu, Sep. Purif. Technol. 157, 203–208 (2016)

    Article  CAS  Google Scholar 

  20. H. Li, J. Shang, Z.P. Yang, W.J. Shen, Z.H. Ai, L.Z. Zhang, Environ. Sci. Technol. 51, 5685–5694 (2017)

    Article  CAS  PubMed  ADS  Google Scholar 

  21. X. An, Q. Tang, H. Lan, H. Liu, J. Qu, Appl. Catal. B 244, 407–413 (2019)

    Article  CAS  Google Scholar 

  22. M.A. Gaikwad, U.V. Ghorpade, U.P. Suryawanshi, P.V. Kumar, S. Jang, J.S. Jang, L. Tran, J.-S. Lee, H. Bae, S.W. Shin, M.P. Suryawanshi, J.H. Kim, A.C.S. Appl, Mater. Interfaces 15, 21123–21133 (2023)

    Article  CAS  Google Scholar 

  23. R.-R. Ding, W.-Q. Li, C.-S. He, Y.-R. Wang, X.-C. Liu, G.-N. Zhou, Y. Mu, Appl. Catal. B 291, 120069 (2021)

    Article  CAS  Google Scholar 

  24. K. Pan, C. Yang, J. Hu, W. Yang, B. Liu, J. Yang, S. Liang, K. Xiao, H. Hou, J. Hazard. Mater. 389, 122072 (2020)

    Article  CAS  PubMed  Google Scholar 

  25. X.Y. Li, S.Q. Huang, H.H. Xu, Y.P. Deng, Z. Wang, Z.Q. Liu, Chin. Chem. Lett. 33, 1321–1324 (2022)

    Article  CAS  Google Scholar 

  26. E. Dutkova, N. Daneu, Z.L. Bujnakova, M. Balaz, J. Kovac, J. Kovac, P. Balaz, Molecules 24, 69 (2019)

    Article  Google Scholar 

  27. X. Lu, F. Deng, M. Liu, X. Luo, A. Wang, Mater. Chem. Phys. 212, 372–377 (2018)

    Article  CAS  Google Scholar 

  28. H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 137, 6393–6399 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. S. Fu, W. Yuan, X. Liu, Y. Yan, H. Liu, L. Li, F. Zhao, J. Zhou, J. Colloid Interface Sci. 569, 150–163 (2020)

    Article  CAS  PubMed  ADS  Google Scholar 

  30. F. Duo, C. Fan, Y. Wang, Y. Cao, X. Zhang, Mater. Sci. Semicond. Process. 38, 157–164 (2015)

    Article  CAS  Google Scholar 

  31. J.-C. Sin, C.-A. Lim, S.-M. Lam, A.R. Mohamed, H. Zeng, Mater. Lett. 248, 20–23 (2019)

    Article  CAS  Google Scholar 

  32. J. Guo, L. Wang, X. Wei, Z.A. Alothman, M.D. Albaqami, V. Malgras, Y. Yamauchi, Y. Kang, M. Wang, W. Guan, X. Xu, J. Hazard. Mater. 415, 125591 (2021)

    Article  CAS  PubMed  Google Scholar 

  33. J.-C. Sin, S.-M. Lam, H. Zeng, H. Lin, H. Li, L. Huang, K.-O. Tham, A.R. Mohamed, J.-W. Lim, Environ. Res. 212, 113394 (2022)

    Article  CAS  PubMed  Google Scholar 

  34. F. Deng, X. Lu, Y. Luo, J. Wang, W. Che, R. Yang, X. Luo, S. Luo, D.D. Dionysiou, Chem. Eng. J. 361, 1451–1461 (2019)

    Article  CAS  Google Scholar 

  35. K. Gao, L.-A. Hou, X. An, D. Huang, Y. Yang, Appl. Catal. B 323, 14171–14179 (2023)

    Google Scholar 

  36. F. El-Kabbany, S. Taha, M. Hafez, I.S. Yahia, J. Mol. Struct. 1111, 33–45 (2016)

    Article  CAS  ADS  Google Scholar 

  37. M. Ghorbani, A.R.S. Nazar, M. Frahadian, S. Tangestaninejad, Appl. Surf. Sci. 612, 155819 (2023)

    Article  CAS  Google Scholar 

  38. G. Tang, F. Zhang, P. Huo, S. Zulfiqarc, J. Xu, Y. Yan, H. Tang, Ceram. Int. 45, 19197–19205 (2019)

    Article  CAS  Google Scholar 

  39. D.-Y. Lee, J. Kim, Thin Solid Films 518, 6537–6541 (2010)

    Article  CAS  ADS  Google Scholar 

  40. S.-Y. Hu, Y.-C. Lee, B.-J. Chen, J. Alloys Compd. 690, 15–20 (2017)

    Article  CAS  Google Scholar 

  41. I.J. Panneerdoss, S.J. Jeyakumar, S. Ramalingam, M. Jothibas, Spectroc. Acta Pt. A 147, 1–13 (2015)

    Article  CAS  ADS  Google Scholar 

  42. V.M. Dzhagan, A.P. Litvinchuk, M.Y. Valakh, M. Kruszynska, J. Kolny-Olesiak, C. Himcinschi, D.R.T. Zahn, Phys. Status Solidi A 211, 195–199 (2014)

    Article  CAS  ADS  Google Scholar 

  43. M. Gusain, P. Kumar, S. Uma, R. Nagarajan, Colloid Surf. A 481, 269–275 (2015)

    Article  CAS  Google Scholar 

  44. K. Zhao, L. Zhang, J. Wang, Q. Li, W. He, J.J. Yin, J. Am. Chem. Soc. 135, 15750–15753 (2013)

    Article  CAS  PubMed  Google Scholar 

  45. H. Cui, Y. Zhou, J. Mei, Z. Li, S. Xu, C. Yao, J. Phys. Chem. Solids 112, 80–87 (2018)

    Article  CAS  ADS  Google Scholar 

  46. P.S.V. Mocherla, D. Prabhu, M.B. Sahana, N.Y. Hebalkar, R. Gopalan, M.S.R. Rao, C. Sudakar, J. Appl. Phys. 124, 48 (2018)

    Article  Google Scholar 

  47. H. Wang, L. Zhang, C. Hu, X. Wang, L. Lyu, G. Sheng, Chem. Eng. J. 332, 572–581 (2018)

    Article  CAS  Google Scholar 

  48. P. Hong, K. Zhang, J. He, Y. Li, Z. Wu, C. Xie, J. Liu, L. Kong, J. Hazard. Mater. 435, 128958 (2022)

    Article  CAS  PubMed  Google Scholar 

  49. Z. Liu, J. Cheng, O. Hoefft, F. Endres, Metals. 12, 4143061 (2022)

    Google Scholar 

  50. G. Wu, Y. Zhang, J. Sun, X. Chen, Z. Zhang, G. Wang, M. Liu, Appl. Surf. Sci. 571, 151268 (2022)

    Article  CAS  Google Scholar 

  51. S. Xin, G. Liu, X. Ma, J. Gong, B. Ma, Q. Yan, Q. Chen, D. Ma, G. Zhang, M. Gao, Y. Xin, Appl. Catal. B 280, 119386 (2021)

    Article  CAS  Google Scholar 

  52. L. Lyu, L. Zhang, G. He, H. He, C. Hu, J. Mater. Chem. A 5, 7153–7164 (2017)

    Article  CAS  Google Scholar 

  53. Y. Shi, J. Li, D. Huang, X. Wang, Y. Huang, C. Chen, R. Li, ACS Catal. 13, 445–458 (2023)

    Article  CAS  Google Scholar 

  54. W. Zou, J. Dong, M. Ji, B. Wang, Y. Li, S. Yin, H. Li, J. Xia, A.C.S. Appl, Nano Mater. (2023). https://doi.org/10.1021/acsanm.2c05448

    Article  Google Scholar 

  55. X. Chen, W. Fu, Z. Yang, Y. Yang, Y. Li, H. Huang, X. Zhang, B. Pan, Water Res. 230, 119562 (2023)

    Article  CAS  PubMed  Google Scholar 

  56. J. Zhang, S. Shao, X. Ding, Z. Li, J. Jing, W. Jiao, Y. Liu, Environ. Sci. Pollut. Res. 29, 34830–34840 (2022)

    Article  CAS  Google Scholar 

  57. W. Deng, F. Pan, B. Batchelor, B. Jung, P. Zhang, A. Abdel-Wahab, H. Zhou, Y. Li, Environ. Sci. Wat. Res. Technol. 5, 769–781 (2019)

    Article  CAS  Google Scholar 

  58. W.D. Zhang, F. Dong, T. Xiong, Q. Zhang, Ceram. Int. 40, 9003–9008 (2014)

    Article  CAS  Google Scholar 

  59. M. Wei, Y. Han, Y. Liu, B. Su, H. Yang, Z. Lei, J. Alloys Compd. 831, 154702 (2020)

    Article  CAS  Google Scholar 

  60. L. Li, M. Cheng, E. Almatrafi, L. Qin, S. Liu, H. Yi, L. Yang, Z. Chen, D. Ma, M. Zhang, X. Zhou, F. Xu, C. Zhou, L. Tang, G. Zeng, C. Lai, J. Hazard. Mater. 457, 131800–131800 (2023)

    Article  CAS  PubMed  Google Scholar 

  61. X. Wu, R. Han, Q. Liu, Y. Su, S. Lu, L. Yang, C. Song, N. Ji, D. Ma, X. Lu, Catal. Sci. Technol. 11, 5374–5387 (2021)

    Article  CAS  Google Scholar 

  62. F. Xia, Z. Nan, Funct. Mater. Lett. 13, 2050002 (2020)

    Article  CAS  ADS  Google Scholar 

  63. L. Qin, Z. Wang, Y. Fu, C. Lai, X. Liu, B. Li, S. Liu, H. Yi, L. Li, M. Zhang, Z. Li, W. Cao, Q. Niu, J. Hazard. Mater. 414, 125448 (2021)

    Article  CAS  PubMed  Google Scholar 

  64. Y.P. Bhoi, B.G. Mishra, Chem. Eng. J. 344, 391–401 (2018)

    Article  CAS  Google Scholar 

  65. L. Li, Y. Liu, S. Zhang, M. Liang, F. Li, Y. Yuan, J. Hazard. Mater. 399, 122883 (2020)

    Article  CAS  PubMed  Google Scholar 

  66. X.S. Cheng, L. Liang, J.Y. Ye, N. Li, B.B. Yan, G.Y. Chen, Sci. Total. Environ. 888, 132272 (2023)

    Article  Google Scholar 

  67. X. Yang, P.Q. Wu, W. Chu, G.L. Wei, J. Wat. Process. Eng. 43, 103850 (2023)

    Google Scholar 

  68. L. Lyu, L. Zhang, C. Hu, Chem. Eng. J. 274, 298–306 (2015)

    Article  Google Scholar 

  69. G. Pliego, J.A. Zazo, P. Garcia-Munoz, M. Munoz, J.A. Casas, J.J. Rodriguez, Crit. Rev. Environ. Sci. Technol. 45, 2611–2692 (2015)

    Article  CAS  Google Scholar 

  70. M.R.K. Kashani, R. Kiani, A. Hassani, A. Kadier, S. Madihi-Bidgoli, K.Y.A. Lin, F. Ghanbari, Sep. Purif. Technol. 292, 121026 (2022)

    Article  Google Scholar 

  71. A. Eslami, M. Moradi, F. Ghanbari, F. Mehdipour, J. Environ. Health Sci. Eng. 11, 1–8 (2013)

    Article  Google Scholar 

  72. W. Li, X. Li, C. Han, L. Gao, H. Wu, M. Li, Sci. Total. Environ. 855, 158963 (2023)

    Article  CAS  PubMed  ADS  Google Scholar 

  73. D. Wu, X. Zhang, S. Liu, Z. Ren, Y. Xing, X. Jin, G. Ni, J. Alloys Compd. 909, 164671 (2022)

    Article  CAS  Google Scholar 

  74. S. Wei, S. Fan, M. Zhang, J. Ren, B. Jia, Y. Wang, R. Wu, Z. Fang, Q. Liang, Mater. Today Sustain. 21, 329–336 (2023)

    Google Scholar 

  75. J. Nie, X. Yu, Y. Wei, Z. Liu, J. Zhang, Z. Yu, Y. Ma, B. Yao, Process Saf. Environ. Protect. 170, 241–258 (2023)

    Article  CAS  Google Scholar 

  76. Y. Zhao, H. Guo, J. Liu, Q. Xia, J. Liu, X. Liang, E. Liu, J. Fan, J. Colloid Interface Sci. 627, 180–193 (2022)

    Article  CAS  PubMed  ADS  Google Scholar 

  77. Y. Zhou, J. He, J. Lu, Y. Liu, Y. Zhou, Chin. Chem. Lett. 31, 2623–2626 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Analysis and Testing Center of SEU for its instrumental and technical support.

Funding

This work was supported by the innovation platform project of Jiangsu Province (No. 6907041203) for its financial support.

Author information

Authors and Affiliations

Authors

Contributions

Fukang Teng: conceptualization, investigation, writing—original draft. Min Zhao: methodology, writing—review & editing. Lin He: software. Chaohua Dai: visualization. Jiaxuan Li: validation. Yongliang Sang: validation. Yu Li: formal analysis. Min Wu: resources, supervision, writing—review & editing, funding acquisition.

Corresponding author

Correspondence to Min Wu.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that might have influenced the work reported here.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 919 kb).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, F., Wu, M., Zhao, M. et al. The abundant oxygen vacancy on CuInS2/BiOBr composite catalyst cooperated with the double Fenton system to perform efficient heterogeneous Fenton degradation of levofloxacin. Journal of Materials Research 39, 412–426 (2024). https://doi.org/10.1557/s43578-023-01234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01234-z

Keywords

Navigation