Skip to main content
Log in

Electrochemical characterization of SnO2/rGO nanostructure for selective quantification of captopril in real matrix

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Captopril (CAP) is one of the most broadly consumed anti-hypertension drug that caused various harmful effects such as zinc deficiency, cough, agranulocytosis, and angioedema. Thus, monitoring the low-level concentration of CAP through reliable and sensitive method is of great significance. The electrocatalytic properties of newly fabricated sensor based on SnO2/rGO/PtE was evaluated through Tafel plot and electrochemical impedance spectroscopy. The engineered sensor exhibited excellent response for CAP under optimal conditions e.g., PBS electrolyte (pH 5), scan sweep 90 mV/s and potential window (0.6 to 1.9 V). For effectiveness of developed sensor, two low and high concentration ranges of CAP were optimized as 1 to 700 nM and 10 100 µM, respectively. The LOD’s of SnO2/rGO/PtE for CAP for low and high concentrations were calculated as 0.061 nM and 0.0018 µM. Moreover, the exceptional long-term stability and anti-interference profile of SnO2/rGO/PtE suggested the reliability of chemically modified sensor.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. B.M. Egan, S.E. Kjeldsen, G. Grassi, M. Esler, G. Mancia, The global burden of hypertension exceeds 1.4 billion people: should a systolic blood pressure target below 130 become the universal standard? J. Hypertens. 37(6), 1148 (2019)

    Article  CAS  Google Scholar 

  2. S. Man, L. Yang, H. Xiang, G. Lu, Y. Wang, C. Liu, W. Gao, Antihypertensive and renal protective effect of Shunaoxin pill combined with captopril on spontaneous hypertension rats. Biomed. Pharmacother. 125, 109977 (2020)

    Article  CAS  Google Scholar 

  3. R. Heel, R. Brogden, T. Speight, G. Avery, Captopril: a preliminary review of its pharmacological properties and therapeutic efficacy. Drugs 20(6), 409 (1980)

    Article  CAS  Google Scholar 

  4. M. Amar, S.W. Lam, K. Faulkenberg, A. Perez, W.W. Tang, J.B. Williams, Captopril versus hydralazine-isosorbide dinitrate vasodilator protocols in patients with acute decompensated heart failure transitioning from sodium. Nitroprusside J. Cardiac Fail. 27(10), 1053 (2021)

    Article  Google Scholar 

  5. A. Górska, B. Paczosa-Bator, M. Szlósarczyk, R. Piech, Highly sensitive voltammetric determination of captopril on renewable amalgam film electrode. Talanta 237, 122937 (2022)

    Article  Google Scholar 

  6. H. Karimi-Maleh, K. Ahanjan, M. Taghavi, M. Ghaemy, A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples. Analytical Methods 8(8), 1780 (2016)

    Article  CAS  Google Scholar 

  7. D.G. Vidt, E.L. Bravo, F.M. Fouad, Captopril. N. Engl. J. Med. 306(4), 214 (1982)

    Article  CAS  Google Scholar 

  8. H. Tandeter, Hypothesis: a single dose of an anxiolitic may prevent unnecessary visits to the emergency room during blood pressure elevations. Medical Hypotheses 88, 35 (2016)

    Article  Google Scholar 

  9. D. Coulter, I. Edwards, Cough associated with captopril and enalapril. Br Med J (Clin Res Ed) 294(6586), 1521 (1987)

    Article  CAS  Google Scholar 

  10. D.M. da Silva, M.C. da Cunha Areias, Rutin as an electrochemical mediator in the determination of captopril using a graphite paste electrode. Electroanalysis. 32(2), 301 (2020)

    Article  Google Scholar 

  11. H. Karimi-Maleh, A. Ensafi, A. Allafchian, Fast and sensitive determination of captopril by voltammetric method using ferrocenedicarboxylic acid modified carbon paste electrode. J. Solid State Electrochem. 14(1), 9 (2010)

    Article  CAS  Google Scholar 

  12. S. Shahrokhian, M. Karimi, H. Khajehsharifi, Carbon-paste electrode modified with cobalt-5-nitrolsalophen as a sensitive voltammetric sensor for detection of captopril. Sens. Actuators B: Chem. 109(2), 278 (2005)

    Article  CAS  Google Scholar 

  13. A. El-Gindy, M.W. Nassar, K.A.-S. Attia, H.H. Abu-Seada, M. El-Ghandour, Stability-Indicating HPLC method for simultaneous determination of captopril, indapamide, and their related compounds. J. Liq. Chromatogr. Related Technol. 37(5), 696 (2014)

    Article  CAS  Google Scholar 

  14. B. Pasquini, S. Orlandini, C. Caprini, M. Del Bubba, M. Innocenti, G. Brusotti, S. Furlanetto, Cyclodextrin-and solvent-modified micellar electrokinetic chromatography for the determination of captopril, hydrochlorothiazide and their impurities: a quality by design approach. Talanta 160, 332 (2016)

    Article  CAS  Google Scholar 

  15. S.Y. Long, Z.P. Chen, Y. Chen, R.Q. Yu, Quantitative detection of captopril in tablet and blood plasma samples by the combination of surface-enhanced Raman spectroscopy with multiplicative effects model. J. Raman Spectrosc. 46(7), 605 (2015)

    Article  CAS  Google Scholar 

  16. Q. Chen, S. Bai, C. Lu, The new approach for captopril detection employing triangular gold nanoparticles-catalyzed luminol chemiluminescence. Talanta 89, 142 (2012)

    Article  CAS  Google Scholar 

  17. K. Imai, Toyo’oka T. Watanabe Y. Anal. Biochem. 128, 471 (1983)

    Article  CAS  Google Scholar 

  18. W.-T. Chen, C.-K. Chiang, Y.-W. Lin, H.-T. Chang, Quantification of captopril in urine through surface-assisted laser desorption/ionization mass spectrometry using 4-mercaptobenzoic acid-capped gold nanoparticles as an internal standard. J. Am. Soc. Mass Spectrom. 21(5), 864 (2010)

    Article  CAS  Google Scholar 

  19. N. Rahman, S. Khan, Circular dichroism spectroscopy: a facile approach for quantitative analysis of captopril and study of its degradation. ACS Omega 4(2), 4252 (2019)

    Article  CAS  Google Scholar 

  20. A.M. Pimenta, A.N. Araújo, M.C.B. Montenegro, Sequential injection analysis of captopril based on colorimetric and potentiometric detection. Analytica Chimica Acta. 438(1–2), 31 (2001)

    Article  CAS  Google Scholar 

  21. A. Hyder, J.A. Buledi, M. Nawaz, D.B. Rajpar, Y. Orooji, M.L. Yola, H. Karimi-Maleh, H. Lin, A.R. Solangi, Identification of heavy metal ions from aqueous environment through gold, silver and copper nanoparticles: an excellent colorimetric approach. Environ. Res. 205, 112475 (2022)

    Article  CAS  Google Scholar 

  22. R. Sha, S. Badhulika, Facile green synthesis of reduced graphene oxide/tin oxide composite for highly selective and ultra-sensitive detection of ascorbic acid. J. Electroanal. Chem. 816, 30 (2018)

    Article  CAS  Google Scholar 

  23. A. Hyder, S.S. Memon, S. Memon, D.B. Rajpar, S.G. Shaikh, J.A. Buledi, A highly discerning p-tetranitrocalix [4] arene (p-TNC4) functionalized copper nanoparticles: a smart electrochemical sensor for the selective determination of diphenhydramine drug. Microchem. J. 163, 105908 (2021)

    Article  CAS  Google Scholar 

  24. S.I.H. Taqvi, A.R. Solangi, J.A. Buledi, N.H. Khand, B. Junejo, A.F. Memon, S. Ameen, A. Bhatti, P.-L. Show, Y. Vasseghian, Plant extract-based green fabrication of nickel ferrite (NiFe2O4) nanoparticles: an operative platform for non-enzymatic determination of pentachlorophenol. Chemosphere. 294, 133760 (2022)

    Article  CAS  Google Scholar 

  25. J.A. Buledi, S. Amin, S.I. Haider, M.I. Bhanger, A.R. Solangi, A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ. Sci. Pollut. Res. 28(42), 58994 (2021)

    Article  Google Scholar 

  26. P. Zheng, N. Wu, Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chemistr—An Asian J. 12(18), 2343 (2017)

    Article  CAS  Google Scholar 

  27. R. Ghosh, A.K. Nayak, S. Santra, D. Pradhan, P.K. Guha, Enhanced ammonia sensing at room temperature with reduced graphene oxide/tin oxide hybrid films. RSC Adv. 5(62), 50165 (2015)

    Article  CAS  Google Scholar 

  28. Y. Si, E.T. Samulski, Synthesis of water soluble graphene. Nano Lett. 8(6), 1679 (2008)

    Article  CAS  Google Scholar 

  29. CeNe.R. Rao, Ae.K. Sood, Ke.S. Subrahmanyam, A. Govindaraj, Graphene: the new two-dimensional nanomaterial. Angewandte Chemie Int. Edition. 48(42), 7752 (2009)

    Article  CAS  Google Scholar 

  30. S. Guo, S. Dong, Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 40(5), 2644 (2011)

    Article  CAS  Google Scholar 

  31. J. Chu, X. Wang, D. Wang, A. Yang, P. Lv, Y. Wu, M. Rong, L. Gao, Highly selective detection of sulfur hexafluoride decomposition components H2S and SOF2 employing sensors based on tin oxide modified reduced graphene oxide. Carbon 135, 95 (2018)

    Article  CAS  Google Scholar 

  32. S. Liu, Z. Wang, Y. Zhang, C. Zhang, T. Zhang, High performance room temperature NO2 sensors based on reduced graphene oxide-multiwalled carbon nanotubes-tin oxide nanoparticles hybrids. Sens. Actuators B: Chem. 211, 318 (2015)

    Article  CAS  Google Scholar 

  33. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010)

    Article  CAS  Google Scholar 

  34. Y. Gao, D. Ma, C. Wang, J. Guan, X. Bao, Reduced graphene oxide as a catalyst for hydrogenation of nitrobenzene at room temperature. Chem. Commun. 47(8), 2432 (2011)

    Article  CAS  Google Scholar 

  35. Z. Jin, D. Nackashi, W. Lu, C. Kittrell, J.M. Tour, Decoration, migration, and aggregation of palladium nanoparticles on graphene sheets. Chem. Mater. 22(20), 5695 (2010)

    Article  CAS  Google Scholar 

  36. T.H. Wondimu, G.-C. Chen, D.M. Kabtamu, H.-Y. Chen, A.W. Bayeh, H.-C. Huang, C.H. Wang, Highly efficient and durable phosphine reduced iron-doped tungsten oxide/reduced graphene oxide nanocomposites for the hydrogen evolution reaction. Int. J. Hydrogen Energy 43(13), 6481 (2018)

    Article  CAS  Google Scholar 

  37. S. Abdolhosseinzadeh, H. Asgharzadeh, H. Seop Kim, Fast and fully-scalable synthesis of reduced graphene oxide. Sci. Rep. 5(1), 1 (2015)

    Article  Google Scholar 

  38. M. Zainuddin, N.N. Raikhan, N. Othman and W. Abdullah: Synthesis of reduced Graphene Oxide (rGO) using different treatments of Graphene Oxide (GO), in IOP Conference Series: Materials Science and Engineering, (358, IOP Publishing, City, 2018), p. 012046

  39. S.N. Alam, N. Sharma, L. Kumar, Synthesis of graphene oxide (GO) by modified hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6(1), 1 (2017)

    Article  CAS  Google Scholar 

  40. L. Li, A. Kovalchuk, J.M. Tour, SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res. 7(9), 1319 (2014)

    Article  CAS  Google Scholar 

  41. J.S. Chen, X.W. Lou, SnO2-based nanomaterials: synthesis and application in lithium-ion batteries. Small 9(11), 1877 (2013)

    Article  CAS  Google Scholar 

  42. S. Tazikeh, A. Akbari, A. Talebi, E. Talebi, Synthesis and characterization of tin oxide nanoparticles via the Co-precipitation method. Mater. Sci.-Poland 32(1), 98 (2014)

    Article  CAS  Google Scholar 

  43. Q. He, Y. Tian, Y. Wu, J. Liu, G. Li, P. Deng, D. Chen, Electrochemical sensor for rapid and sensitive detection of tryptophan by a Cu2O nanoparticles-coated reduced graphene oxide nanocomposite. Biomolecules 9(5), 176 (2019)

    Article  Google Scholar 

  44. H. Bakhsh, J.A. Buledi, T. Ghumro, N.H. Khand, S. Ameen, A.R. Solangi, S.T.H. Sherazi, Z.U.H. Shah, Sodium dodecyl sulfate stabilized NiO nanoseeds: a potential procedure for ultra-sensitive determination of bentazone in vegetables. J. Mater. Sci.: Mater. Electr. 32(12), 15917 (2021)

    CAS  Google Scholar 

  45. S. Panhwar, J.A. Buledi, D. Mal, A.R. Solangi, A. Balouch, A. Hyder, Importance and analytical perspective of green synthetic strategies of copper, zinc, and titanium oxide nanoparticles and their applications in pathogens and environmental remediation. Curr. Analytical Chem. 17(8), 1169 (2021)

    Article  CAS  Google Scholar 

  46. J.A. Buledi, Z.U.H. Shah, A. Mallah, A.R. Solangi, Current perspective and developments in electrochemical sensors modified with nanomaterials for environmental and pharmaceutical analysis. Curr. Analytical Chem. 18(1), 102 (2022)

    Article  CAS  Google Scholar 

  47. S.A. Memon, D. Hassan, J.A. Buledi, A.R. Solangi, S.Q. Memon, I.M. Palabiyik, Plant material protected cobalt oxide nanoparticles: sensitive electro-catalyst for tramadol detection. Microchem. J. 159, 105480 (2020)

    Article  CAS  Google Scholar 

  48. S. Kucheyev, T. Baumann, P. Sterne, Y. Wang, T. Van Buuren, A. Hamza, L. Terminello, T. Willey, Surface electronic states in three-dimensional SnO2 nanostructures. Phys. Rev. B. 72(3), 035404 (2005)

    Article  Google Scholar 

  49. K. Nemade, S. Waghuley, In situ synthesis of graphene/SnO2 quantum dots composites for chemiresistive gas sensing. Mater. Sci. Semiconductor Proc. 24, 126 (2014)

    Article  CAS  Google Scholar 

  50. D. Toloman, A. Popa, M. Stan, C. Socaci, A. Biris, G. Katona, F. Tudorache, I. Petrila, F. Iacomi, Reduced graphene oxide decorated with Fe doped SnO2 nanoparticles for humidity sensor. Appl. Surface Sci. 402, 410 (2017)

    Article  CAS  Google Scholar 

  51. V. Srivastava, K. Jain, At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor. Mater. Lett. 169, 28 (2016)

    Article  CAS  Google Scholar 

  52. M. Zhang, Y. Zhen, F. Sun, C. Xu, Hydrothermally synthesized SnO2-graphene composites for H2 sensing at low operating temperature. Mater. Sci. Eng.: B. 209, 37 (2016)

    Article  CAS  Google Scholar 

  53. A. Biaggi-Labiosa, F. Sola, M. Lebrón-Colón, L. Evans, J. Xu, G. Hunter, G. Berger, J. Gonzalez, A novel methane sensor based on porous SnO2 nanorods: room temperature to high temperature detection. Nanotechnology. 23(45), 455501 (2012)

    Article  CAS  Google Scholar 

  54. S. Bose, S. Chakraborty, B. Ghosh, D. Das, A. Sen, H.S. Maiti, Methane sensitivity of Fe-doped SnO2 thick films. Sens. Actuators B: Chem. 105(2), 346 (2005)

    Article  CAS  Google Scholar 

  55. W. Chen, Z. Qin, Y. Liu, Y. Zhang, Y. Li, S. Shen, Z.M. Wang, H.-Z. Song, Promotion on acetone sensing of single SnO2 nanobelt by Eu doping. Nanoscale Res. Lett. 12(1), 1 (2017)

    Article  Google Scholar 

  56. H. Bahramipur, F. Jalali, Voltammetric determination of captopril using chlorpromazine as a homogeneous mediator. Int. J. Electrochem. 2011, 864358 (2011)

    Article  Google Scholar 

  57. R.A. Soomro, M.M. Tunesi, S. Karakus, N. Kalwar, Highly sensitive electrochemical determination of captopril using CuO modified ITO electrode: the effect of in situ grown nanostructures over signal sensitivity. RSC Adv. 7(31), 19353 (2017)

    Article  CAS  Google Scholar 

  58. M. Safaei, H. Beitollahi, M.R. Shishehbore, S. Tajik, Electrocatalytic determination of captopril using a carbon paste electrode modified with N-(ferrocenyl-methylidene) fluorene-2-amine and graphene/ZnO nanocomposite. J. Serbian Chem. Soc. 84(2), 175 (2019)

    Article  CAS  Google Scholar 

  59. G. Absalan, M. Akhond, R. Karimi, A.M. Ramezani, Simultaneous determination of captopril and hydrochlorothiazide by using a carbon ionic liquid electrode modified with copper hydroxide nanoparticles. Microchimica Acta. 185(2), 1 (2018)

    Article  CAS  Google Scholar 

  60. M. Shahbakhsh, M. Noroozifar, 2D-Single-crystal hexagonal gold nanosheets for ultra-trace voltammetric determination of captopril. Microchimica Acta. 186(3), 195 (2019)

    Article  Google Scholar 

  61. H. Karimi-Maleh, M. Moazampour, V.K. Gupta, A.L. Sanati, Electrocatalytic determination of captopril in real samples using NiO nanoparticle modified (9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido)-4-ethylbenzene-1,2-diol carbon paste electrode. Sens. Actuators B: Chem. 199, 47 (2014)

    Article  CAS  Google Scholar 

  62. B. Rezaei, S. Damiri, Voltammetric behavior of multi-walled carbon nanotubes modified electrode-hexacyanoferrate(II) electrocatalyst system as a sensor for determination of captopril. Sens. Actuators B: Chem. 134(1), 324 (2008)

    Article  CAS  Google Scholar 

  63. H. Krimi, M. Keyvanfard, K. Alizad, Voltammmetric determination of captopril using multiwall carbon nanotubes paste electrode in the presence of isoproterenol as a mediator. Iran. J. Pharm. Res.: IJPR. 15(1), 107 (2016)

    Google Scholar 

Download references

Acknowledgments

We are highly thankful to HEC Pakistan for providing us the fund to carry out this research under the program (HEC Indigenous 5000 scholarship phase-II batch-VI)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber R. Solangi.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 150 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buledi, J.A., Solangi, A.R., Malah, A. et al. Electrochemical characterization of SnO2/rGO nanostructure for selective quantification of captopril in real matrix. Journal of Materials Research 38, 2764–2774 (2023). https://doi.org/10.1557/s43578-023-01000-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-01000-1

Keywords

Navigation