Skip to main content
Log in

Silymarin-loaded electrospun polycaprolactone nanofibers as wound dressing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Herein, we fabricated silymarin (SIL)-loaded polycaprolactone (PCL) electrospun nanofiber mats containing different SIL concentrations (5, 7.5, 10%) for wound dressing applications. Solution properties, nanofiber properties and SIL presence were analyzed by viscosity measurements, SEM and FTIR, respectively. Solution viscosities were increased with increasing SIL concentrations resulting in bead-free, thicker and smooth nanofibers. The lowest contact angle was measured as ~ 92° for 10% SIL-loaded sample which had the smoothest nanofibers and a more controlled and continuous SIL release with a rate of 68.29% at end of 144 h during in vitro release experiments. In vivo studies on rats were conducted on this sample and results were compared with a conventional wound dressing and a PCL nanofiber mat. In comparison, the 10% SIL-loaded sample provided more rapid and significantly greater wound healing from the first day of observation. The results confirmed the potential application of PCL/SIL electrospun nanofiber mats as wound dressing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and/or from the authors upon reasonable request.

References

  1. A.W. Jatoi, H. Ogasawara, I.S. Kim, Q.Q. Ni, Polyvinyl alcohol nanofiber based three phase wound dressings for sustained wound healing applications. Mater. Lett. 241, 168–171 (2019). https://doi.org/10.1016/j.matlet.2019.01.084

    Article  CAS  Google Scholar 

  2. A. Sadeghianmaryan, Z. Yazdanpanah, Y.A. Soltani, H.A. Sardroud, M.H. Nasirtabrizi, X. Chen, Curcumin-loaded electrospun polycaprolactone/montmorillonite nanocomposite: wound dressing application with anti-bacterial and low cell toxicity properties. J. Biomater. Sci. Polym. Ed. 31(2), 169–187 (2020). https://doi.org/10.1080/09205063.2019.1680928

    Article  CAS  Google Scholar 

  3. P.D. Kapadnis, S.N. Shrotriya, Electrospun silybin enriched scaffolds of polyethylene oxide as wound dressings: enhanced wound closure, reepithelization in rat excisional wound model. Indian J. Pharm. Educ. Res. 53, 301–309 (2019). https://doi.org/10.5530/ijper.53.2.38

    Article  CAS  Google Scholar 

  4. R. Uppal, G.N. Ramaswamy, C. Arnold, R. Goodband, Y. Wang, Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behavior. J. Biomed. Mater. Res. B: Appl. Biomater. 97(1), 20–29 (2011). https://doi.org/10.1002/jbm.b.31776

    Article  CAS  Google Scholar 

  5. S. Selvaraj, C. Inbasekar, S. Pandurangan, N.F. Nishter, Collagen-coated silk fibroin nanofibers with antioxidants for enhanced wound healing. J. Biomater. Sci. Polym. Ed. 5, 1–18 (2022). https://doi.org/10.1080/09205063.2022.2106707

    Article  CAS  Google Scholar 

  6. A. Frenot, I.S. Chronakis, Polymer nanofibers assembled by electrospinning. Curr. Opin. Colloid Interface Sci. 8(1), 64–75 (2003). https://doi.org/10.1016/S1359-0294(03)00004-9

    Article  CAS  Google Scholar 

  7. A. Greiner, J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46(30), 5670–5703 (2007). https://doi.org/10.1002/anie.200604646

    Article  CAS  Google Scholar 

  8. M. Abrigo, S.L. McArthur, P. Kingshott, Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol. Biosci. 14, 772–792 (2022). https://doi.org/10.1002/mabi.201300561

    Article  CAS  Google Scholar 

  9. A.T. Iacob, M. Drăgan, O.M. Ionescu, L. Profire, A. Ficai, E. Andronescu et al., An overview of biopolymeric electrospun nanofibers based on polysaccharides for wound healing management. Pharmaceutics 12, 983 (2020). https://doi.org/10.3390/pharmaceutics12100983

    Article  CAS  Google Scholar 

  10. K. Seethalakshmi, M. Kaviya, B. Venkatachalapathy, S. Mubeena, A.M. Punnoose, T.M. Sridhar, Nanohydroxyapatite-doped polycaprolactone-based nanoscaffolds as a viable drug delivery agent in bone tissue engineering. J. Mater. Res. 36, 420–430 (2021). https://doi.org/10.1557/s43578-020-00042-z

    Article  CAS  Google Scholar 

  11. E.G. Choubar, M.H. Nasirtabrizi, F. Salimi, N. Sohrabi-gilani, A. Sadeghianamryan, Fabrication and in vitro characterization of novel co-electrospun polycaprolactone/collagen/polyvinylpyrrolidone nanofibrous scaffolds for bone tissue engineering applications. J. Mater. Res. 37, 4140–4152 (2022). https://doi.org/10.1557/s43578-022-00778-w

    Article  CAS  Google Scholar 

  12. M.K. Gaydhane, J.S. Kanuganti, C.S. Sharma, Honey and curcumin loaded multilayered polyvinylalcohol/cellulose acetate electrospun nanofibrous mat for wound healing. J. Mater. Res. 35(600–609), 9 (2020). https://doi.org/10.1557/jmr.2020.52

    Article  CAS  Google Scholar 

  13. D.G. Yu, P. Zhao, The key elements for biomolecules to biomaterials and to bioapplications. Biomolecules 12, 1234 (2022). https://doi.org/10.3390/biom12091234

    Article  CAS  Google Scholar 

  14. S. Kang, S. Hou, X. Chen, D.G. Yu, L. Wang, X. Li et al., Energy-saving electrospinning with a concentric teflon-core rod spinneret to create medicated nanofibers. Polymers 12(10), 2421 (2020). https://doi.org/10.3390/polym12102421

    Article  CAS  Google Scholar 

  15. W. Jiang, X. Zhang, P. Liu, Y. Zhang, W. Song, D.-G. Yu et al., Electrospun healthcare nanofibers from medicinal liquor of Phellinus igniarius. Adv. Compos. Hybrid Mater. 5, 3045–3056 (2022). https://doi.org/10.1007/s42114-022-00551-x

    Article  CAS  Google Scholar 

  16. P. Zhao, W. Chen, Z. Feng, Y. Liu, P. Liu, Y. Xie et al., Electrospun nanofibers for periodontal treatment: a recent progress. Int. J. Nanomed. 17, 4137–4162 (2022). https://doi.org/10.2147/IJN.S370340

    Article  CAS  Google Scholar 

  17. Y. Zhou, M. Wang, C. Yan, H. Liu, D.G. Yu, Advances in the application of electrospun drug-loaded nanofibers in the treatment of oral ulcers. Biomolecules 12(9), 1254 (2022). https://doi.org/10.3390/biom12091254

    Article  CAS  Google Scholar 

  18. F.B. Miguez, O.B.O. Moreira, M.A.L. de Oliveira, Â.M.L. Denadai, L.F.C. de Oliveira, F.B. De Sousa, Reversible electrospun fibers containing spiropyran for acid and base vapor sensing. J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00842-5

    Article  Google Scholar 

  19. S.M. Jung, G.H. Yoon, H.C. Lee, H.S. Shin, Chitosan nanoparticle/PCL nanofiber composite for wound dressing and drug delivery. J. Biomater. Sci. Polym. Ed. 26(4), 252–263 (2015). https://doi.org/10.1080/09205063.2014.996699

    Article  CAS  Google Scholar 

  20. T.T.T. Nguyen, C. Ghosh, S.G. Hwang, L.D. Tran, J.S. Park, Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J. Mater. Sci. 48, 7125–7133 (2013). https://doi.org/10.1007/s10853-013-7527-y

    Article  CAS  Google Scholar 

  21. K.K. Chereddy, G. Vandermeulen, V. Préat, PLGA based drug delivery systems: promising carriers for wound healing activity. Wound Repair Regen 24, 223–236 (2016). https://doi.org/10.1111/wrr.12404

    Article  Google Scholar 

  22. H.T. Bui, O.H. Chung, J. Dela Cruz, J.S. Park, Fabrication and characterization of electrospun curcumin-loaded polycaprolactone-polyethylene glycol nanofibers for enhanced wound healing. Macromol. Res. 22, 1288–1296 (2014). https://doi.org/10.1007/s13233-014-2179-6

    Article  CAS  Google Scholar 

  23. S.M. Jung, S.K. Min, H.C. Lee, Y.S. Kwon, M.H. Jung, H.S. Shin, Spirulina-PCL nanofiber wound dressing to improve cutaneous wound healing by enhancing antioxidative mechanism. J. Nanomater. (2016). https://doi.org/10.1155/2016/6135727

    Article  Google Scholar 

  24. F. Hejazi, H. Mirzadeh, S. Shojaei, PCL-based 3D nanofibrous structure with well-designed morphology and enhanced specific surface area for tissue engineering application. Prog. Biomater. (2023). https://doi.org/10.1007/s40204-022-00215-5

    Article  Google Scholar 

  25. J.M.A. Mancipe, L.C.B. Pereira, P.G. de Miranda Borchio, M.L. Dias, R.M. da Silva Moreira Thiré, Novel polycaprolactone (PCL)-type I collagen core-shell electrospun nanofibers for wound healing applications. J. Biomed. Mater. Res. Part B: Appl. Biomater. 111, 366–381 (2023). https://doi.org/10.1002/jbm.b.35156

    Article  CAS  Google Scholar 

  26. M. Yousefnezhad, S. Davaran, M. Babazadeh, A. Akbarzadeh, H. Pazoki-Toroudi, PCL-based nanoparticles for doxorubicin-ezetimibe co-delivery: a combination therapy for prostate cancer using a drug repurposing strategy. BioImpacts (2023). https://doi.org/10.34172/bi.2023.24252

    Article  Google Scholar 

  27. A. Azari, A. Golchin, M.M. Maymand, F. Mansouri, A. Ardeshirylajimi, Electrospun polycaprolactone nanofibers: current research and applications in biomedical application. Adv. Pharm. Bull. 12(4), 658–672 (2022). https://doi.org/10.34172/apb.2022.070

    Article  CAS  Google Scholar 

  28. W. Zeng, N.-m Cheng, X. Liang, H. Hu, F. Luo, J. Jin et al., Electrospun polycaprolactone nanofibrous membranes loaded with baicalin for antibacterial wound dressing. Sci. Rep. 12, 1–11 (2022). https://doi.org/10.1038/s41598-022-13141-0

    Article  CAS  Google Scholar 

  29. M.A. Derakhshan, N. Nazeri, K. Khoshnevisan, R. Heshmat, K. Omidfar, Three-layered PCL-collagen nanofibers containing melilotus officinalis extract for diabetic ulcer healing in a rat model. J. Diabetes Metab. Disord. 21, 313–321 (2022). https://doi.org/10.1007/s40200-022-00976-7

    Article  CAS  Google Scholar 

  30. R. Ekambaram, S. Saravanan, V.P.S. Babu, S. Dharmalingam, Fabrication and evaluation of Docetaxel doped ZnO nanoparticles incorporated PCL nanofibers for its hemocompatibility, cytotoxicity and apoptotic effects against A549. Materialia 21, 101278 (2022). https://doi.org/10.1016/j.mtla.2021.101278

    Article  CAS  Google Scholar 

  31. S. Mozaffari, S. Seyedabadi, E. Alemzadeh, Anticancer efficiency of doxorubicin and berberine-loaded PCL nanofibers in preventing local breast cancer recurrence. J. Drug Deliv. Sci. Technol. 67, 102984 (2022). https://doi.org/10.1016/j.jddst.2021.102984

    Article  CAS  Google Scholar 

  32. S. Baghersad, A. Hivechi, S.H. Bahrami, P. Brouki Milan, R.A. Siegel, M. Amoupour, Optimal Aloe vera encapsulated PCL/Gel nanofiber design for skin substitute application and the evaluation of its in vivo implantation. J. Drug Deliv. Sci. Technol. 74, 103536 (2022). https://doi.org/10.1016/j.jddst.2022.103536

    Article  CAS  Google Scholar 

  33. S. Eldurini, B.M. Abd El-Hady, M.W. Shafaa, A.A.M. Gad, E. Tolba, A multicompartment vascular implant of electrospun wintergreen oil/polycaprolactone fibers coated with poly(ethylene oxide). Biomed. J. 44, 589–597 (2021). https://doi.org/10.1016/j.bj.2020.04.008

    Article  CAS  Google Scholar 

  34. K.P. Devi, Milk thistle (silybum marianum), in Nonvitamin and nonmineral nutritional supplements. (Academic Press, Cambridge, 2019), pp.321–325. https://doi.org/10.1016/B978-0-12-812491-8.00046-1

    Chapter  Google Scholar 

  35. D. Biedermann, E. Vavříková, L. Cvak, V. Křen, Chemistry of silybin. Nat. Prod. Rep. 31, 1138–1157 (2014). https://doi.org/10.1039/C3NP70122K

    Article  CAS  Google Scholar 

  36. A.T. Mpharm, P. Shende, Nanotherapeutic silibinin: an insight of phytomedicine in healthcare reformation. Nanomed. Nanotechnol. Biol. Med. 21, 102057 (2019). https://doi.org/10.1016/j.nano.2019.102057

    Article  CAS  Google Scholar 

  37. M. Fallah, A. Davoodvandi, S. Nikmanzar, S. Aghili, S.M.A. Mirazimi, M. Aschner et al., Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomed. Pharmacother. 142, 112024 (2021). https://doi.org/10.1016/j.biopha.2021.112024

    Article  CAS  Google Scholar 

  38. M. Phiriyawirut, T. Phaechamud, Cellulose acetate electrospun fiber mats for controlled release of silymarin. J. Nanosci. Nanotechnol. 12, 793–799 (2012). https://doi.org/10.1166/jnn.2012.5343

    Article  CAS  Google Scholar 

  39. C.S. Chambers, V. Holečková, L. Petrásková, D. Biedermann, K. Valentová, M. Buchta et al., The silymarin composition… and why does it matter??? Food Res. Int. 100, 339–353 (2017). https://doi.org/10.1016/j.foodres.2017.07.017

    Article  CAS  Google Scholar 

  40. A. Federico, M. Dallio, C. Loguercio, Silymarin/silybin and chronic liver disease: a marriage of many years. Molecules 22, 191 (2017). https://doi.org/10.3390/molecules22020191

    Article  CAS  Google Scholar 

  41. M. Vaid, S. Katiyar, Molecular mechanisms of inhibition of photocarcinogenesis by silymarin, a phytochemical from milk thistle (Silybum marianum L. Gaertn) (Review). Int. J. Oncol. 36(5), 1053–1060 (2010). https://doi.org/10.3892/ijo_00000586

    Article  CAS  Google Scholar 

  42. A. Aliabadi, A. Yousefi, A. Mahjoor, M. Farahmand, Evaluation of wound healing activity of silymarin (Silybum marianum) in streptozotocin induced experimental diabetes in rats. J. Anim. Vet. Adv. 10, 3287–3292 (2011). https://doi.org/10.3923/javaa.2011.3287.3292

    Article  CAS  Google Scholar 

  43. M. Mahmoodi-Nesheli, S. Alizadeh, H. Solhi, J. Mohseni, M. Mahmoodi-Nesheli, Adjuvant effect of oral Silymarin on patients’ wound healing process caused by thermal injuries. Casp. J. Intern. Med. 9(4), 341–346 (2018). https://doi.org/10.22088/cjim.9.4.341

    Article  Google Scholar 

  44. R. Sharifi, H. Rastegar, M. Kamalinejad, A.R. Dehpour, S.M. Tavangar, M. Paknejad et al., Effect of topical application of Silymarin (Silybum marianum) on excision wound healing in albino rats. Acta Med. Iran. 50(9), 583–588 (2012)

    CAS  Google Scholar 

  45. S. Ashkani-Esfahani, Y. Emami, E. Esmaeilzadeh, F. Bagheri, M.R. Namazi, M. Keshtkar et al., Silymarin enhanced fibroblast proliferation and tissue regeneration in full thickness skin wounds in rat models; a stereological study. J. Saudi Soc. Dermatol. Dermatol. Surg. 17, 7–12 (2013). https://doi.org/10.1016/j.jssdds.2012.11.001

    Article  Google Scholar 

  46. A. Oryan, A. Tabatabaei Naeini, A. Moshiri, A. Mohammadalipour, M.R. Tabandeh, Modulation of cutaneous wound healing by silymarin in rats. J. Wound Care 21(9), 457–464 (2012). https://doi.org/10.12968/jowc.2012.21.9.457

    Article  CAS  Google Scholar 

  47. V. Jacobs, R.D. Anandjiwala, M. Maaza, The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. J. Appl. Polym. Sci. 115, 3130–3136 (2010). https://doi.org/10.1002/app.31396

    Article  CAS  Google Scholar 

  48. V. Beachley, X. Wen, Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C 29, 663–668 (2009). https://doi.org/10.1016/j.msec.2008.10.037

    Article  CAS  Google Scholar 

  49. Z. Li, C. Wang, Effects of working parameters on electrospinning, in One-dimensional nanostructures. ed. by Z. Li, C. Wang (Berlin, Springer, 2013), pp.15–28. https://doi.org/10.1007/978-3-642-36427-3_2

    Chapter  Google Scholar 

  50. Y. Yuan, T.R. Lee, Contact angle and wetting properties, in Surface science techniques, vol. 51, ed. by G. Bracco, B. Holst (Berlin, Springer, 2013), pp.3–34

    Chapter  Google Scholar 

  51. T. Darmanin, F. Guittard, Wettability of conducting polymers: from superhydrophilicity to superoleophobicity. Prog. Polym. Sci. Pergamon. 39, 656–682 (2014). https://doi.org/10.1016/j.progpolymsci.2013.10.003

    Article  CAS  Google Scholar 

  52. M.M. Shaik, A. Dapkekar, J.M. Rajwade, S.H. Jadhav, M. Kowshik, Antioxidant-antibacterial containing bi-layer scaffolds as potential candidates for management of oxidative stress and infections in wound healing. J. Mater. Sci. Mater. Med. 30, 1–13 (2019). https://doi.org/10.1007/s10856-018-6212-8

    Article  CAS  Google Scholar 

  53. A.E. El-Nahas, A.N. Allam, D.A. Abdelmonsif, A.H. El-Kamel, Silymarin-loaded Eudragit nanoparticles: formulation, characterization, and hepatoprotective and toxicity evaluation. AAPS PharmSciTech 18, 3076–3086 (2017). https://doi.org/10.1208/s12249-017-0799-9

    Article  CAS  Google Scholar 

  54. T. Elzein, M. Nasser-Eddine, C. Delaite, S. Bistac, P. Dumas, FTIR study of polycaprolactone chain organization at interfaces. J. Colloid. Interface Sci. 273, 381–387 (2004). https://doi.org/10.1016/j.jcis.2004.02.001

    Article  CAS  Google Scholar 

  55. T. Khampieng, G.E. Wnek, P. Supaphol, Electrospun DOXY-h loaded-poly(acrylic acid) nanofiber mats: in vitro drug release and antibacterial properties investigation. J. Biomater. Sci. Polym. Ed. 25, 1292–1305 (2014). https://doi.org/10.1080/09205063.2014.929431

    Article  CAS  Google Scholar 

  56. M. Padmaa Paarakh, P. Ani Jose, C.M. Setty, G.V.P. Christoper, Release kinetics-concepts and applications. Int. J. Pharm. Res. Technol. 8(1), 12–20 (2018). https://doi.org/10.31838/ijprt/08.01.02

    Article  Google Scholar 

  57. P.F. Surai, Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants 4(1), 204–247 (2015). https://doi.org/10.3390/antiox4010204

    Article  CAS  Google Scholar 

  58. E.S. Lovelace, J. Wagoner, J. MacDonald, T. Bammler, J. Bruckner, J. Brownell et al., Silymarin suppresses cellular inflammation by inducing reparative stress signaling. J. Nat. Prod. 78, 1990–2000 (2015). https://doi.org/10.1021/acs.jnatprod.5b00288

    Article  CAS  Google Scholar 

  59. J. Zhao, M. Lahiri-Chatterjee, Y. Sharma, R. Agarwal, Inhibitory effect of a flavonoid antioxidant silymarin on benzoyl peroxide-induced tumor promotion, oxidative stress and inflammatory responses in SENCAR mouse skin. Carcinogenesis 21, 811–816 (2000). https://doi.org/10.1093/carcin/21.4.811

    Article  CAS  Google Scholar 

  60. G. Zhu, D. Kremenakova, Y. Wang, J. Militky, Air permeability of polyester nonwoven fabrics. Autex Res. J. 15, 8–12 (2015). https://doi.org/10.2478/aut-2014-0019

    Article  CAS  Google Scholar 

  61. Z. Ma, M. Kotaki, T. Yong, W. He, S. Ramakrishna, Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 26, 2527–2536 (2005). https://doi.org/10.1016/j.biomaterials.2004.07.026

    Article  CAS  Google Scholar 

  62. P. Costa, J.M. Sousa Lobo, Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 13, 123–133 (2001). https://doi.org/10.1016/S0928-0987(01)00095-1

    Article  CAS  Google Scholar 

  63. C. Aras, E.T. Ozer, G. Goktalay, G. Saat, E. Karaca, Evaluation of Nigella sativa oil loaded electrospun polyurethane nanofibrous mat as wound dressing. J. Biomater. Sci. Polym. Ed. 32(13), 1718–1735 (2021). https://doi.org/10.1080/09205063.2021.1937463

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Erkan Ermis for his technical assistance during the in vivo studies and Sema Isik for her technical support during the in vitro studies. This study is a part of Aisegkioul Sali’s MSc thesis and was financially supported by The Scientific Research Commission of Bursa Uludag University with the project number of THIZ-2021-680.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Goktalay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sali, A., Duzyer Gebizli, S. & Goktalay, G. Silymarin-loaded electrospun polycaprolactone nanofibers as wound dressing. Journal of Materials Research 38, 2251–2263 (2023). https://doi.org/10.1557/s43578-023-00959-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00959-1

Keywords

Navigation