Skip to main content

Advertisement

Log in

Transition metal dichalcogenide MXY (M = Mo, W; X, Y = S, Se) monolayer: Structure, fabrication, properties, and applications

  • Invited Paper
  • FOCUS ISSUE: Structure-Property Relationships in Emerging Two-dimensional Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Besides the carbon-based materials, the Janus structure, which combines features of multiple Janus transition metal dichalcogenide (TMDC) monolayers into a single polar material, has increased the interest of researchers because of its unique structure and advanced applications. Monolayer TMDC can sustain substantially greater strain than bulk materials, making them ideal for flexible electrical and optoelectronic devices. Furthermore, TMDCs have recently gained scientific attention for their energy and catalytic uses due to their excellent properties. However, there haven’t been many similar investigations, and the underlying physical pictures are still unclear. This review presents detailed information about the structure, fabrication, and electronic properties of 2-D MXY (M = Mo, W; and X, Y = S, Se) for solar cell, gas sensors, photocatalyst, battery, and FET applications. The review concludes with a discussion of future difficulties and research possibilities for Janus 2-D materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

Manuscript has not any associated data.

References

  1. H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8(4), 4033–4041 (2014). https://doi.org/10.1021/nn501226z

    Article  CAS  Google Scholar 

  2. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97(22), 223109 (2010). https://doi.org/10.1063/1.3524215

    Article  CAS  Google Scholar 

  3. R. Fei, W. Li, J. Li, L. Yang, Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS. Appl. Phys. Lett. 107(17), 173104 (2015). https://doi.org/10.1063/1.4934750

    Article  CAS  Google Scholar 

  4. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012). https://doi.org/10.1038/nnano.2012.193

    Article  CAS  Google Scholar 

  5. X. Zhou, N. Zhou, C. Li, H. Song, Q. Zhang, X. Hu, T. Zhai, Vertical heterostructures based on SnSe2/MoS2 for high-performance photodetectors. 2D Materials 4(2), 025048 (2017). https://doi.org/10.1088/2053-1583/aa6422

    Article  CAS  Google Scholar 

  6. G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, D. Xiao, Phys. Rev. B 88, 085433 (2013); Erratum Phys. Rev. B 89, 039901 (2014). https://doi.org/10.1103/PhysRevB.88.085433

  7. A. Kormányos, V. Zólyomi, N.D. Drummond, G. Burkard, Phys. Rev. X 4, 011034 (2014); Erratum Phys. Rev. X 4, 039901 (2014). https://doi.org/10.1103/PhysRevX.4.011034

  8. A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, L.-J. Li, Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12(8), 744–749 (2017). https://doi.org/10.1038/nnano.2017.100

    Article  CAS  Google Scholar 

  9. Y. Zhang, H. Ye, Z. Yu, Y. Liu, Y. Li, First-principles study of square phase MX2 and Janus MXY (M = M, W; X, Y = S, Se, Te) transition metal dichalcogenide monolayers under biaxial strain. Physica E 110, 134–139 (2019). https://doi.org/10.1016/j.physe.2019.02.009

    Article  CAS  Google Scholar 

  10. W. Xia, L. Dai, P. Yu, X. Tong, W. Song, G. Zhang, Z. Wang, Recent progress in van der Waals heterojunctions. Nanoscale 9, 4324–4365 (2017). https://doi.org/10.1039/C7NR00844A

    Article  CAS  Google Scholar 

  11. W. Zhou, J. Chen, Z. Yang, J. Liu, F. Ouyang, Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe. Phys. Rev. B 99, 075160 (2019). https://doi.org/10.1103/physrevb.99.075160

    Article  CAS  Google Scholar 

  12. S. Yu, W. Wei, F. Li, B. Huang, Y. Dai, Influence of intrinsic dipole moment of Janus MXY on the properties of van der Waals structures consisting of graphene. Phys. Chem. Chem. Phys. (2020). https://doi.org/10.1039/d0cp04323k

    Article  Google Scholar 

  13. S.-D. Guo, X. Guo, R.-Y. Han, Y. Deng, Predicted Janus SnSSe monolayer: a comprehensive first-principal study. Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/C9CP04590B

    Article  Google Scholar 

  14. X. Liu, P. Gao, W. Hu, J. Yang, Photogenerated-carrier separation and transfer in two-dimensional janus transition metal dichalcogenides and graphene van der waals sandwich heterojunction photovoltaic cells. J. Phys. Chem. Lett. (2020). https://doi.org/10.1021/acs.jpclett.0c00706

    Article  Google Scholar 

  15. H. Tang, Q. Hu, M. Zheng, Y. Chi, X. Qin, H. Pang, Q. Xu, MXene–2D layered electrode materials for energy storage. Progr. Nat. Sci. (2018). https://doi.org/10.1016/j.pnsc.2018.03.003

    Article  Google Scholar 

  16. L. Ju, M. Bie, J. Shang, X. Tang, L. Kou, Janus transition metal dichalcogenides: a superior platform for photocatalytic water splitting. J. Phys. Mater. 3(2), 022004 (2020). https://doi.org/10.1088/2515-7639/ab7c57

    Article  CAS  Google Scholar 

  17. H. Yuan, M.S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B.-J. Yang, Y. Iwasa, Zeeman-type spin splitting controlled by an electric field. Nat. Phys. 9(9), 563–569 (2013). https://doi.org/10.1038/nphys2691

    Article  CAS  Google Scholar 

  18. Y. Wang, C. Cong, C. Qiu, T. Yu, Raman Spectroscopy study of lattice vibration and crystallographic orientation of monolayer MoS2 under uniaxial strain. Small 9(17), 2857–2861 (2013). https://doi.org/10.1002/smll.201202876

    Article  CAS  Google Scholar 

  19. A.Y. Lu, H. Zhu, J. Xiao, C.P. Chuu, Y. Han, M.H. Chiu, C.C. Cheng, C.W. Yang, K.H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D.A. Muller, M.Y. Chou, X. Zhang, L.J. Li, Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12, 744–749 (2017). https://doi.org/10.1038/nnano.2017.100

    Article  CAS  Google Scholar 

  20. W.-J. Yin, B. Wen, G.-Z. Nie, X.-L. Wei, L.-M. Liu, Tunable dipole and carrier mobility for a few layers Janus MoSSe structure. J. Mater. Chem. C 6(7), 1693–1700 (2018). https://doi.org/10.1039/C7TC05225A

    Article  CAS  Google Scholar 

  21. Z. Wang, 2H → 1T` phase transformation in Janus monolayer MoSSe and MoSTe: an efficient hole injection contact for 2H-MoS2. J. Mater. Chem. C 6(47), 13000–13005 (2018). https://doi.org/10.1039/c8tc04951c

    Article  CAS  Google Scholar 

  22. F. Barakat, A. Laref, M.S. AlSalhi, S. Faraji, The impact of anion elements on the engineering of the electronic and optical characteristics of the two-dimensional monolayer janus MoSSe for nanoelectronic device applications. Results Phys. (2020). https://doi.org/10.1016/j.rinp.2020.103284

    Article  Google Scholar 

  23. R. Chaurasiya, A. Dixit, Defect engineered MoSSe Janus monolayer as a promising two-dimensional material for NO2 and NO gas sensing. Appl. Surf. Sci. 490, 204–219 (2019). https://doi.org/10.1016/j.apsusc.2019.06.049

    Article  CAS  Google Scholar 

  24. K. Chen, W. Tang, M. Fu et al., Manipulation of the magnetic properties of Janus WSSe monolayer by the adsorption of transition metal atoms. Nanoscale Res Lett 16, 104 (2021). https://doi.org/10.1186/s11671-021-03560-9

    Article  CAS  Google Scholar 

  25. Z. Guan, S. Ni, S. Hu, Tunable electronic and optical properties of monolayer and multilayer Janus MoSSe as a photocatalyst for solar water splitting: a first-principles study. J. Phys. Chem. C 122(11), 6209–6216 (2018). https://doi.org/10.1021/acs.jpcc.8b00257

    Article  CAS  Google Scholar 

  26. Z.-K. Tang, B. Wen, M. Chen, L.-M. Liu, Janus MoSSe nanotubes: tunable band gap and excellent optical properties for surface photocatalysis. Adv. Theory Simul. (2018). https://doi.org/10.1002/adts.201800082

    Article  Google Scholar 

  27. R. Chaurasiya, A. Dixit, R. Pandey, Strain-mediated stability and electronic properties of WS2, Janus WSSe and WSe2 monolayers. Superlattices Microstruct. (2018). https://doi.org/10.1016/j.spmi.2018.07.039

    Article  Google Scholar 

  28. J. Chen, K. Wu, H. Ma, W. Hu, J. Yang, Tunable Rashba spin splitting in Janus transition-metal dichalcogenide monolayers via charge doping. RSC Adv. 10(11), 6388–6394 (2020). https://doi.org/10.1039/D0RA00674B

    Article  CAS  Google Scholar 

  29. T. Hu, F. Jia, G. Zhao, J. Wu, A. Stroppa, W. Ren, Intrinsic and anisotropic Rashba spin splitting in Janus transition-metal dichalcogenide monolayers. Phys. Rev. B (2018). https://doi.org/10.1103/PhysRevB.97.235404

    Article  Google Scholar 

  30. C. Xia, W. Xiong, J. Du, T. Wang, Y. Peng, J. Li, Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Phys. Rev. B. (2018). https://doi.org/10.1103/physrevb.98.165424

    Article  Google Scholar 

  31. F. Li, W. Wei, P. Zhao, B. Huang, Y. Dai, Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe. J. Phys. Chem. Lett. 8(23), 5959–5965 (2017). https://doi.org/10.1021/acs.jpclett.7b02841

    Article  CAS  Google Scholar 

  32. E. Scalise, M. Houssa, G. Pourtois et al., Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 5, 43–48 (2012). https://doi.org/10.1007/s12274-011-0183-0

    Article  CAS  Google Scholar 

  33. W. Guo, X. Ge, S. Sun, Y. Xie, X. Ye, The strain effect on the electronic properties of the MoSSe/WSSe van der Waals heterostructure: a first-principles study. Phys. Chem. Chem. Phys. (2020). https://doi.org/10.1039/d0cp00403k

    Article  Google Scholar 

  34. A. Patel, D. Singh, Y. Sonvane, P.B. Thakor, R. Ahuja, High thermoelectric performance in two-dimensional Janus monolayer material WS-X (X = Se and Te). ACS Appl. Mater. Interfaces. 12(41), 46212–46219 (2020). https://doi.org/10.1021/acsami.0c13960

    Article  CAS  Google Scholar 

  35. S. Tao, B. Xu, J. Shi, S. Zhong, X. Lei, G. Liu, M. Wu, Tunable dipole moment in janus single-layer MoSSe via transition metal atom adsorption. J. Phys. Chem. C (2019). https://doi.org/10.1021/acs.jpcc.9b00421

    Article  Google Scholar 

  36. K. Ren, S. Wang, Y. Luo, J.-P. Chou, J. Yu, W. Tang, M. Sun, High-efficiency photocatalyst for water splitting: a Janus MoSSe/XN (X = Ga, Al) van der Waals heterostructure. J. Phys. D Appl. Phys. 53(18), 185504 (2020). https://doi.org/10.1088/1361-6463/ab71ad

    Article  CAS  Google Scholar 

  37. S. Deng, L. Li, O. Guy, Y. Zhang, Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons. Phys. Chem. Chem. Phys. (2019). https://doi.org/10.1039/c9cp03639c

    Article  Google Scholar 

  38. K.-A.N. Duerloo, M.T. Ong, E.J. Reed, Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 3, 2871–2876 (2012)

    Article  CAS  Google Scholar 

  39. H. Zhu, Y. Wang, J. Xiao, M. Liu, S. Xiong, Z.J. Wong, Z. Ye, Y. Ye, X. Yin, X. Zhang, Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotech. 10, 151–155 (2015)

    Article  CAS  Google Scholar 

  40. X. Tang, L. Kou, 2D Janus transition metal dichalcogenides: properties and applications. Phys. Status Solidi B 259, 2100562 (2022). https://doi.org/10.1002/pssb.202100562

    Article  CAS  Google Scholar 

  41. L. Dong, J. Lou, V.B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS Nano 11(8), 8242–8248 (2017). https://doi.org/10.1021/acsnano.7b03313

    Article  CAS  Google Scholar 

  42. H. Cai, Y. Guo, H. Gao, W. Guo, Tribo-piezoelectricity in Janus transition metal dichalcogenide bilayers: a first-principles study. Nano Energy (2018). https://doi.org/10.1016/j.nanoen.2018.11.027

    Article  Google Scholar 

  43. Mamta, K.K. Maurya, V.N. Singh, Comparison of various thin-film-based absorber materials: a viable approach for next-generation solar cells. Coatings 2022, 12, 405. https://doi.org/10.3390/coatings12030405

  44. M. Idrees, H.U. Din, R. Ali, G. Rehman, T. Hussain, C.V. Nguyen, I. Ahmad, B. Amin, Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. Phys. Chem. Chem. Phys. 2019(21), 18612–18621 (2019). https://doi.org/10.1039/C9CP02648G

    Article  Google Scholar 

  45. R. Ali, G.-J. Hou, Z.-G. Zhu, Q.-B. Yan, Q.-R. Zheng, G. Su, Predicted lead-free perovskites for solar cells. Chem. Mater. 30(3), 718–728 (2018). https://doi.org/10.1021/acs.chemmater.7b04036

    Article  CAS  Google Scholar 

  46. R. Chaurasiya, G.K. Gupta, A. Dixit, Ultrathin Janus WSSe buffer layer for W(S/Se)2 absorber based solar cells: a hybrid, DFT and macroscopic, simulation studies. Sol. Energy Mater. Sol. Cells 201, 110076 (2019). https://doi.org/10.1016/j.solmat.2019.110076

    Article  CAS  Google Scholar 

  47. S. Rani, M. Kumar, H. Sheoran, R. Singh, V.N. Singh, Rapidly responding room temperature NO2 gas sensor based on SnSe nanostructured film. Mater. Today Commun.. 30, 103135 (2022). https://doi.org/10.1016/j.mtcomm.2022.103135

    Article  CAS  Google Scholar 

  48. D. Wang, T. Lan, J. Pan, Z. Liu, A. Yang, M. Yang, M. Rong, Janus MoSSe monolayer: a highly strain-sensitive gas sensing material to detect SF6 decompositions. Sens. Actuators A (2020). https://doi.org/10.1016/j.sna.2020.112049

    Article  Google Scholar 

  49. M. Meng, T. Li, S. Li, K. Liu, Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering. J. Phys. D Appl. Phys. 51(10), 105004 (2018). https://doi.org/10.1088/1361-6463/aaaad6

    Article  CAS  Google Scholar 

  50. C. Yeh, Computational study of Janus transition metal dichalcogenide monolayers for acetone gas sensing. J. ACS Omega 5(48), 31398–31406 (2020). https://doi.org/10.1021/acsomega.0c04938

    Article  CAS  Google Scholar 

  51. Z. Shen, K. Ren, R. Zheng, Z. Huang, Z. Cui, Z. Zheng, L. Wang, The thermal and electronic properties of the lateral Janus MoSSe/WSSe heterostructure. Frontiers Mater. (2022). https://doi.org/10.3389/fmats.2022.838648

    Article  Google Scholar 

  52. Y. Liu, Y. Fang, D. Yang, X. Pi, P. Wang, Recent progress of heterostructures based on two dimensional materials and wide bandgap semiconductors. J. Phys. (2022). https://doi.org/10.1088/1361-648X/ac5310

    Article  Google Scholar 

  53. L. Ju, M. Bie, X. Tang, J. Shang, L. Kou, Janus WSSe monolayer: excellent photocatalyst for overall water-splitting. ACS Appl. Mater. Interfaces. (2020). https://doi.org/10.1021/acsami.0c06149

    Article  Google Scholar 

  54. D. Er, H. Ye, N.C. Frey, H. Kumar, J. Lou, V.B. Shenoy, Prediction of enhanced catalytic activity for hydrogen evolution reaction in Janus transition metal dichalcogenides. Nano Lett. 18(6), 3943–3949 (2018). https://doi.org/10.1021/acs.nanolett.8b01335

    Article  CAS  Google Scholar 

  55. W. Shi, G. Li, Z. Wang, Triggering catalytic active sites for hydrogen evolution reaction by intrinsic defects in Janus monolayer MoSSe. J. Phys. Chem. C (2019). https://doi.org/10.1021/acs.jpcc.9b01485

    Article  Google Scholar 

  56. M. Yogesh-Singh, K.K. Maurya, V.N. Singh, A review on properties, applications, and deposition techniques of antimony selenide. Solar Energy Mater Solar Cells 230, 111223 (2021). https://doi.org/10.1016/j.solmat.2021.111223

    Article  CAS  Google Scholar 

  57. H.-C. Pai, Wu. Yuh-Renn, Investigating the high field transport properties of Janus WSSe and MoSSe by DFT analysis and Monte Carlo simulations. J. Appl. Phys. 131, 144303 (2022). https://doi.org/10.1063/5.0088593

    Article  CAS  Google Scholar 

  58. M. Winter, J.O. Besenhard, M.E. Spahr, P. Novák, Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10(10), 725–763 (1998). https://doi.org/10.1002/(SICI)1521-4095(199807)10:10%3C725::AID-ADMA725%3E3.0.CO;2-Z

    Article  CAS  Google Scholar 

  59. X. Tang, H. Ye, Y. Liu, Z. Guo, M. Wang, (2021) Lattice-distorted lithiation behavior of a square phase Janus MoSSe monolayer for electrode applications. Nanoscale Adv. 3, 2902–2910 (2021). https://doi.org/10.1039/D1NA00112D

    Article  CAS  Google Scholar 

  60. S.E. Thompson, S. Parthasarathy, Moore’s law: the future of Si microelectronics. Mater. Today 9(6), 20–25 (2006). https://doi.org/10.1016/s1369-7021(06)71539-5

    Article  CAS  Google Scholar 

  61. R.F. Service, MATERIALS SCIENCE: is silicon’s reign nearing its end? Science 323(5917), 1000–1002 (2009). https://doi.org/10.1126/science.323.5917.1000

    Article  CAS  Google Scholar 

  62. G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Electronics based on two-dimensional materials. Nat. Nanotechnol. 9(10), 768779 (2014). https://doi.org/10.1038/nnano.2014.207

    Article  CAS  Google Scholar 

  63. Y. Ding, G. Yang, G. Yan, Y. Yingzhou, Z. Xiumei, T. Xue, L. Naiyan, W. Yueke, D. Zhicheng, Z. Huiqin, L. Yuhang, First-principles predictions of Janus MoSSe and WSSe for FET applications. J. Phys. Chem. C (2020). https://doi.org/10.1021/acs.jpcc.0c06772

    Article  Google Scholar 

  64. R. Sant, M. Gay, A. Marty, S. Lisi, R. Harrabi, C.Ã. Vergnaud, M.T. Dau, X. Weng, J. Coraux, N. Gauthier, O. Renault, G. Renaud, M. Jamet, Synthesis of epitaxial monolayer Janus SPtSe. J NPJ D Mater. Appl. 4(1), 41 (2020). https://doi.org/10.1038/s41699-020-00175-z

    Article  CAS  Google Scholar 

  65. Y.-C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon, A.A. Puretzky, L. Liang, X. Kong, Y. Gu, A. Strasser, H.M. Meyer, M. Lorenz, M.F. Chisholm, I.N. Ivanov, C.M. Rouleau, G. Duscher, K. Xiao, D.B. Geohegan, ACS Nano 14, 3896 (2020). https://doi.org/10.1021/acsnano.9b10196

    Article  CAS  Google Scholar 

  66. J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, J. Lou, Janus monolayer transition-metal dichalcogenides. ACS Nano 11(8), 8192–8198 (2017). https://doi.org/10.1021/acsnano.7b03186

    Article  CAS  Google Scholar 

  67. R. Li, Y. Cheng, W. Huang, Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments. Small (2018). https://doi.org/10.1002/smll.201802091

    Article  Google Scholar 

  68. M. Petrić, M. Kremser, M. Barbone, Y. Qin, Y. Sayyad, Y. Shen, S. Tongay, J. Finley, A. Méndez, K. Müller, Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe. Phys. Rev. B (2021). https://doi.org/10.1103/PhysRevB.103.035414

    Article  Google Scholar 

Download references

Acknowledgments

Mamta and Yogesh Singh acknowledge the Council for Scientific and Industrial Research (CSIR), India, for the Senior Research Fellowship (SRF) grant. The authors would like to thank their institute for its support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. K. Maurya or V. N. Singh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamta, Singh, Y., Maurya, K.K. et al. Transition metal dichalcogenide MXY (M = Mo, W; X, Y = S, Se) monolayer: Structure, fabrication, properties, and applications. Journal of Materials Research 37, 3403–3417 (2022). https://doi.org/10.1557/s43578-022-00643-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00643-w

Keywords

Navigation