Skip to main content
Log in

Effect of Mn/Fe ratio on Fe removal efficiency and tensile ductility of an Al–7.0Si–2.4Fe alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The poor plasticity of recycled Al–Si alloys severely limits their application owing to the harmful Fe-rich phase. Here we studied the effect of Mn/Fe mass ratio on iron removal efficiency and type of iron-rich phase in Al–7.0Si–2.4Fe alloy. The results show that adding Mn promotes the formation of primary α-Al15(FeMn)3Si2 rather than α-Al8Fe2Si, benefit for the gravity sedimentation and removal of sludge phases owing to the higher formation temperature of α-Al15(FeMn)3Si2. When Mn/Fe ratio is higher than 0.7, a peritectic structure forms showing irregular double-layer band-shape with high Mn/Fe ratio in inner layer, whose volume fraction and size gradually increase with increasing Mn/Fe ratio. The peritectic structures consumed the Mn in the melt, leading to no more increase of Fe removal efficiency. The remaining Mn transforms the needle-like β-Al5FeSi to compact α-Al15(FeMn)3Si2. Both fracture strength and elongation improved significantly compared with the alloy without Mn addition, while mechanical properties have no obviously change with increasing Mn/Fe ratio.

Graphic abstract

There are 10 pictures in this manuscript, the abstracts are listed as follows: Fig. 1 shows the effect of Mn/Fe ratio on the chemical composition of the ingots; Fig. 2 shows the morphologies, chemical composition of the sludge phases in the slag with different Mn/Fe ratios; Fig. 3 shows equilibrium solidification curves with different Mn/Fe ratios; Fig. 4 shows the morphological statistics of the two kinds of typical sludge phases under different Mn/Fe ratios; Fig. 5 shows the effect of sphericity and equivalent diameter on settlement velocity; Fig. 6 shows the microstructure of the Al–7Si–2.4Fe alloy after melt holding under different Mn/Fe ratios; Fig. 7 shows the XRD and DSC curves after melt holding under different Mn/Fe ratios; Fig. 8 shows the morphological characteristics of Fe-rich phases in different spatial directions; Fig. 9 shows the tensile properties of the as-cast alloy with different Mn/Fe ratios; Fig. 10 shows the cracks initiation and propagation of the as-cast alloy with different Mn/Fe ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability statement

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N. Ding, F. Gao, Z. Wang, X. Gong, Z. Nie, Environment impact analysis of primary aluminum and recycled aluminum. Procedia. Eng. 27, 465 (2012)

    Article  CAS  Google Scholar 

  2. J.A. Taylor, D.H. St John, J. Barresi, M.J. Couper, An empirical analysis of trends in mechanical properties of T6 heat treated Al-Si-Mg casting alloys. Int. J. Cast Met. Res. 12(6), 419 (2000)

    Article  CAS  Google Scholar 

  3. L.F. Zhang, J.W. Gao, L.N.W. Damoah, D.G. Robertson, Removal of iron from aluminum: a review. Min. Proc. Ext. Met. Rev. 33(2), 99 (2012)

    Article  Google Scholar 

  4. M.A. Moustafa, Effect of iron content on the formation of β-Al5FeSi and porosity in Al–Si eutectic alloys. J. Mater. Process. Technol. 209, 605 (2009)

    Article  CAS  Google Scholar 

  5. G. Timelli, S. Capuzzi, A. Fabrizi, Precipitation of primary Fe-rich compounds in secondary AlSi9Cu3(Fe) alloys. J. Therm. Anal. Calorim. 123(1), 249 (2016)

    Article  CAS  Google Scholar 

  6. S.S.S. Kumari, R.M. Pillai, T.P.D. Rajan, B.C. Pai, Effects of individual and combined additions of Be, Mn, Ca and Sr on the solidification behaviour, structure and mechanical properties of Al−7Si−0.3 Mg−0.8Fe alloy. Mater. Sci. Eng., A 460, 56 (2007)

    Google Scholar 

  7. Y.C. Tzeng, C.T. Wu, H.Y. Bor, J.L. Horng, M.L. Tsai, S.L. Lee, Effects of scandium addition on iron-bearing phases and tensile properties of Al-7Si-0.6 Mg alloys. Mater. Sci. Eng., A 593, 103 (2014)

    Article  CAS  Google Scholar 

  8. C.J. Todaro, M.A. Easton, D. Qiu, G. Wang, D.H. Stjohn, M. Qian, The effect of ultrasonic melt treatment on macro-segregation and peritectic transformation in an Al-19Si-4Fe alloy. Metall. Mater. Trans. A 48, 1 (2017)

    Article  Google Scholar 

  9. E. Cinkilic, C.D. Ridgeway, X. Yan, A.A. Luo, A formation map of iron-containing intermetallic phases in recycled cast aluminum alloys. Metall. Mater. Trans. A 50(12), 5945 (2019)

    Article  CAS  Google Scholar 

  10. S.G. Shabestari, The effect of iron and manganese on the formation of intermetallic compounds in aluminum–silicon alloys. Mater. Sci. Eng., A 383, 289 (2004)

    Article  Google Scholar 

  11. C. Bidmeshki, V. Abouei, H. Saghafian, S.G. Shabestari, M.T. Noghani, Effect of Mn addition on Fe-rich intermetallics morphology and dry sliding wear investigation of hypereutectic Al-17.5%Si alloys. J. Mater. Res. Technol. 5(3), 250 (2016)

    Article  CAS  Google Scholar 

  12. J.Y. Hwang, H.W. Doty, M.J. Kaufman, The effects of Mn additions on the microstructure and mechanical properties of Al-Si-Cu casting alloys. Mater. Sci. Eng., A 488(1–2), 496 (2008)

    Article  Google Scholar 

  13. D. Bösch, S. Pogatscher, M. Hummel, W. Fragner, P.J. Uggowitzer, M. Göken, H.W. Höppel, Secondary Al-Si-Mg high-pressure die casting alloys with enhanced ductility. Metall. Mater. Tran. A 46(3), 1035 (2015)

    Article  Google Scholar 

  14. D.F. Song, S.C. Wang, K.H. Zheng, Effects of Mn/Fe mole ratio on iron-rich phase morphology of A356 cast aluminum alloy. Chin. J. Nonferrous Met. 25(7), 1832 (2015)

    Article  CAS  Google Scholar 

  15. T. Gao, K. Hu, L. Wang, B. Zhang, X. Liu, Morphological evolution and strengthening behavior of α-Al(Fe,Mn)Si in Al-6Si-2Fe-xMn alloys. J. Results Phys. 7, 1051 (2017)

    Article  Google Scholar 

  16. S. Ferraro, A. Fabrizi, G. Timelli, Evolution of sludge particles in secondary die-cast aluminum alloys as function of Fe, Mn and Cr contents. Mater. Chem. Phys. 153, 168 (2015)

    Article  CAS  Google Scholar 

  17. S.G. Shabestari, M. Keshavarz, M.M. Hejazi, Effect of strontium on the kinetics of formation and segregation of intermetallic compounds in A380 aluminum alloy. J. Alloys Compd. 477(1–2), 892 (2009)

    Article  CAS  Google Scholar 

  18. H.L.D. Moraes, J.R.D. Oliveira, D.C.R. Espinosa, J.A.S. Tenório, Removal of iron from molten recycled aluminum through intermediate phase filtration. Mater. Trans. 47, 1731 (2006)

    Article  Google Scholar 

  19. S.W. Kim, U.H. Im, H.C. Cha, S.H. Kim, J.E. Jang, K.Y. Kim, Removal of primary iron rich phase from aluminum-silicon melt by centrifugal separation. China Foundry 10, 112 (2013)

    CAS  Google Scholar 

  20. Z. Xu, T. Li, Y. Zhou, Elimination of Fe in Al-Si cast alloy scrap by electromagnetic filtration. J. Mater. Sci. 38(22), 4557 (2003)

    Article  CAS  Google Scholar 

  21. S.G. Shabestari, J.E. Gruzleski, Gravity segregation of complex intermetallic compounds in liquid aluminum-silicon alloys. Metall. Mater. Trans. A 26(4), 999 (1995)

    Article  Google Scholar 

  22. D.F. Song, S.C. Wang, Y.L. Zhao, S.H. Liu, Y. Du, Y.H. Kang, Z. Wang, W.W. Zhang, Effect of melt holding on the morphological evolution and sedimentation behavior of iron-rich intermetallic phases in Al-Si-Fe-Mn-Mg alloy. Trans. Nonferrous Metal. Soc. China 30(1), 1–13 (2020)

    Article  CAS  Google Scholar 

  23. D. Annadurai, P.Y. Lu, N.K. Tang, J.K. Chen, Iron reduction in 356 secondary aluminum alloy by Mn and Cr addition for sediment separation. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00433-2

    Article  Google Scholar 

  24. A. Flores-V, J. Escobedo, J. Mendez, M. Mendez, Kinetic mechanisms of iron segregation from Al-Si-Cu-Fe-Mn melts. Light Met. 845(1992)

  25. A. Flores-V, M. Sukiennik, A.H. Castillejos-E, F.A. Acosta-G, J.C. Escobedo-B, A kinetic study on the nucleation and growth of the Al8FeMnSi2 intermetallic compound for aluminum scrap purification. Intermetallics 6, 217 (1998)

    Article  CAS  Google Scholar 

  26. X. Cao, J. Campbell, The solidification characteristics of Fe-rich intermetallics in Al-11.5Si-0.4 Mg cast alloys. Metall. Mater. Trans. A 35, 1425 (2004)

    Article  Google Scholar 

  27. M. Mahta, M. Emamy, A. Daman, A. Keyvani, J. Campbell, Precipitation of Fe rich intermetallics in Cr and Co-modified A413 alloy. Cast Met. 18(2), 73 (2005)

    CAS  Google Scholar 

  28. W.C. Yang, F. Gao, S.X. Ji, Formation and sedimentation of Fe-rich intermetallics in Al-Si-Cu-Fe alloy. J. Trans. Nonferrous Met. Soc. China 25(5), 1704 (2015)

    Article  CAS  Google Scholar 

  29. M.V. Kral, A crystallographic identification of intermetallic phases in Al-Si alloys. Mater. Lett. 59, 2271 (2005)

    Article  CAS  Google Scholar 

  30. Y. Wang, N. Feng, T. Sun, J. You, J. Qin, Mechanism of removing iron phase in Al-Si alloy by natural deposition. Rare Met. 34(1), 28 (2010)

    CAS  Google Scholar 

  31. S. Terzi, J.A. Taylor, Y.H. Cho, L. Salvo, M. Suéry, E. Boller, A.K. Dahle, In situ study of nucleation and growth of the irregular α-Al/β-Al5FeSi eutectic by 3-D synchrotron X-ray microtomography. Acta Mater. 58, 5370 (2010)

    Article  CAS  Google Scholar 

  32. J. Wang, P.D. Lee, R.W. Hamilton, M. Li, J. Allison, The kinetics of Fe-rich intermetallic formation in aluminium alloys: in situ observation. Scr. Mater. 60, 516 (2009)

    Article  CAS  Google Scholar 

  33. J.M. Yu, N. Wanderka, A. Rack, E. Raudin, E. Boller, H. Markötter, A. Manzoni, F. Vogel, T. Arlt, I. Manke, J. Banhart, Formation of intermetallic δ phase in Al-10Si-0.3Fe alloy investigated by in-situ 4D X-ray synchrotron tomography. Acta Mater. 129, 194 (2017)

    Article  CAS  Google Scholar 

  34. C.M. Dinnis, J.A. Taylor, A.K. Dahle, As-cast morphology of iron-intermetallics in Al-Si foundry alloys. Scr. Mater. 53, 955 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was financially support by the National Natural Science Foundation of China (52074131), the Pearl River S and T Nova Program of Guangzhou (201806010126), the Key-Area Research and Development Program of Guangdong Province (2020B010186002), the Guangxi Autonomous Regional Program of Science and Technology (GUI AB18126010), and the Sihui Plan Project of Science and Technology (2017A0109005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongfu Song or Weiwen Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, D., Zhao, Y., Wang, Z. et al. Effect of Mn/Fe ratio on Fe removal efficiency and tensile ductility of an Al–7.0Si–2.4Fe alloy. Journal of Materials Research 36, 1357–1366 (2021). https://doi.org/10.1557/s43578-021-00194-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00194-6

Keywords

Navigation