Skip to main content

Advertisement

Log in

Photo-crosslinked gelatin methacrylate hydrogels with mesenchymal stem cell and endothelial cell spheroids as soft tissue substitutes

  • Article
  • Annual Issue: Early Career Scholars In Materials Science
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Tumors, trauma, and congenital defects require volume restoration of soft tissues. Tissue engineering provides an alternative source for substituting these defects. Cell encapsulation into hydrogels provides a three-dimensional microenvironment. Spheroids of cells provide close packing and increase cell-to-cell contacts resulting in differentiation. Gelatin is a natural polymer with low immunogenicity and preserved amino acid motifs for cell adhesion and proliferation. In the present study, a soft photo-crosslinked gelatin methacrylate (GelMA) hydrogel with long in vitro lifetime was synthesized. Stem cells (dental pulp derived, DPSC) and endothelial cells (umbilical cord derived, HUVEC) were formed into spheroids to induce prevascular network formation and encapsulated into GelMA (10% weight/volume). Results showed high cell viability, better gel mechanical properties, and longer HUVEC sprouting with spheroids compared to the same combination of cells. Altogether, the photo-crosslinked GelMA hydrogels with DPSC and HUVEC spheroids provided a promising tissue engineering and vascularization strategy in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

Similar content being viewed by others

References

  1. C.W. Patrick: Tissue engineering strategies for adipose tissue repair. Anat. Rec. 263, 361 (2001).

    Article  CAS  Google Scholar 

  2. A. Monfort and A. Izeta: Strategies for human adipose tissue repair and regeneration. J. Cosmet. Dermatol. Sci. Appl. 02, 93 (2012).

    Google Scholar 

  3. D. Qi, S. Wu, M.A. Kuss, W. Shi, S. Chung, P.T. Deegan, A. Kamenskiy, Y. He, and B. Duan: Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering. Acta Biomater. 74, 131 (2018).

    Article  CAS  Google Scholar 

  4. B. Huber, K. Borchers, G.E. Tovar, and P.J. Kluger: Methacrylated gelatin and mature adipocytes are promising components for adipose tissue engineering. J. Biomater. Appl. 30, 699 (2016).

    Article  CAS  Google Scholar 

  5. A. Kayabolen, D. Keskin, A. Aykan, Y. Karslıoglu, F. Zor, and A. Tezcaner: Native extracellular matrix/fibroin hydrogels for adipose tissue engineering with enhanced vascularization. Biomed. Mater. 12, 035007 (2017).

    Article  Google Scholar 

  6. T. Ibsirlioglu, A.E. Elçin, and Y.M. Elçin: Decellularized biological scaffold and stem cells from autologous human adipose tissue for cartilage tissue engineering. Methods 171, 97 (2020).

    Article  CAS  Google Scholar 

  7. L. Luo, Y. He, Q. Chang, G. Xie, W. Zhan, X. Wang, T. Zhou, M. Xing, and F. Lu: Polycaprolactone nanofibrous mesh reduces foreign body reaction and induces adipose flap expansion in tissue engineering chamber. Int. J. Nanomed. 11, 6471 (2016).

    Article  CAS  Google Scholar 

  8. A. Sivashanmugam, R. Arun Kumar, M. Vishnu Priya, S.V. Nair, and R. Jayakumar: An overview of injectable polymeric hydrogels for tissue engineering. Eur. Polym. J. 72, 543 (2015).

    Article  CAS  Google Scholar 

  9. S. Xiao, T. Zhao, J. Wang, C. Wang, J. Du, L. Ying, J. Lin, C. Zhang, W. Hu, L. Wang, and K. Xu: Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: an effective strategy for tissue engineering. Stem Cell Rev. Rep. 15, 664 (2019).

    Article  CAS  Google Scholar 

  10. A.K. Lynn, I.V. Yannas, and W. Bonfield: Antigenicity and immunogenicity of collagen. J. Biomed. Mater. Res., Part B 71, 343 (2004).

    Article  CAS  Google Scholar 

  11. A.I. Van Den Bulcke, B. Bogdanov, N. De Rooze, E.H. Schacht, M. Cornelissen, and H. Berghmans: Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1, 31 (2000).

    Article  CAS  Google Scholar 

  12. J.R. Choi, K.W. Yong, J.Y. Choi, and A.C. Cowie: Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques 66, 40 (2019).

    Article  CAS  Google Scholar 

  13. G. Eke, N. Mangir, N. Hasirci, S. MacNeil, and V. Hasirci: Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129, 188 (2017).

    Article  CAS  Google Scholar 

  14. L. Tytgat, L. Van Damme, J. Van Hoorick, H. Declercq, H. Thienpont, H. Ottevaere, P. Blondeel, P. Dubruel, and S. Van Vlierberghe: Additive manufacturing of photo-crosslinked gelatin scaffolds for adipose tissue engineering. Acta Biomater. 94, 340 (2019).

    Article  CAS  Google Scholar 

  15. L. Tytgat, M.R. Kollert, L. Van Damme, H. Thienpont, H. Ottevaere, G.N. Duda, S. Geissler, P. Dubruel, S. Van Vlierberghe, and T.H. Qazi: Evaluation of 3D printed gelatin-based scaffolds with varying pore size for MSC-based adipose tissue engineering. Macromol. Biosci. 20, 1900364 (2020).

    Article  CAS  Google Scholar 

  16. X. Zhao, Q. Lang, L. Yildirimer, Z.Y. Lin, W. Cui, N. Annabi, K.W. Ng, M.R. Dokmeci, A.M. Ghaemmaghami, and A. Khademhosseini: Photocrosslinkable gelatin hydrogel for epidermal tissue engineering. Adv. Healthc. Mater. 5, 108 (2016).

    Article  CAS  Google Scholar 

  17. J. Zou, W. Wang, A.T. Neffe, X. Xu, Z. Li, Z. Deng, X. Sun, N. Ma, and A. Lendlein: Adipogenic differentiation of human adipose derived mesenchymal stem cells in 3D architectured gelatin based hydrogels (ArcGel). Clin. Hemorheol. Microcirc. 67, 297 (2017).

    Article  CAS  Google Scholar 

  18. Y.C. Chen, R.Z. Lin, H. Qi, Y. Yang, H. Bae, J.M. Melero-Martin, and A. Khademhosseini: Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater. 22, 2027 (2012).

    Article  CAS  Google Scholar 

  19. R.Z. Lin, Y.C. Chen, R. Moreno-Luna, A. Khademhosseini, and J.M. Melero-Martin: Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials 34, 6785 (2013).

    Article  CAS  Google Scholar 

  20. D.G. Phinney and D.J. Prockop: Concise review: Mesenchymal stem/multipotent stromal cells: The state of transdifferentiation and modes of tissue repair-current views. Stem Cells 25, 2896 (2007).

    Article  Google Scholar 

  21. G. Chamberlain, J. Fox, B. Ashton, and J. Middleton: Concise review: Mesenchymal stem cells: Their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739 (2007).

    Article  CAS  Google Scholar 

  22. H. Harada, P. Kettunen, H.S. Jung, T. Mustonen, Y.A. Wang, and I. Thesleff: Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J. Cell Biol. 147, 105 (1999).

    Article  CAS  Google Scholar 

  23. D. Zhang, G. Wei, P. Li, X. Zhou, and Y. Zhang: Urine-derived stem cells: A novel and versatile progenitor source for cell-based therapy and regenerative medicine. Genes Dis. 1, 8 (2014).

    Article  Google Scholar 

  24. E. Fuchs and J.A. Segre: Stem cells: a new lease on life. Cell 100, 143 (2000).

    Article  CAS  Google Scholar 

  25. C.E. Wong, C. Paratore, M.T. Dours-Zimmermann, A. Rochat, T. Pietri, U. Suter, D.R. Zimmermann, S. Dufour, J.P. Thiery, D. Meijer, F. Beermann, Y. Barrandon, and L. Sommer: Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J. Cell Biol. 175, 1005 (2006).

    Article  CAS  Google Scholar 

  26. P. Bianco, M. Riminucci, S. Gronthos, and P.G. Robey: Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 19, 180 (2001).

    Article  CAS  Google Scholar 

  27. P. Charbord. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum. Gene Ther. 21, 1045 (2010).

    Article  CAS  Google Scholar 

  28. M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, and D.R. Marshak: Multilineage potential of adult human mesenchymal stem cells. Science 284, 143 (1999).

    Article  CAS  Google Scholar 

  29. P.A. Zuk, M. Zhu, H. Mizuno, J. Huang, J.W. Futrell, A.J. Katz, P. Benhaim, H.P. Lorenz, and M.H. Hedrick: Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7(2), 211 (2001).

    Article  CAS  Google Scholar 

  30. G.T.J. Huang, S. Gronthos, and S. Shi: Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine . J. Dent. Res. 88, 792 (2009).

    Article  CAS  Google Scholar 

  31. D. Normando: New achievements: from submission to disclosure. Dental Press J. Orthod. 20, 17 (2015).

    Article  Google Scholar 

  32. B.C. Perry, D. Zhou, X. Wu, F.C. Yang, M.A. Byers, T.M.G. Chu, J.J. Hockema, E.J. Woods, and W.S. Goebel: Collection, cryopreservation, and characterization of human dental pulp-derived mesenchymal stem cells for banking and clinical use. Tissue Eng., Part C 14, 149 (2008).

    Article  CAS  Google Scholar 

  33. S. Gronthos, J. Brahim, W. Li, L.W. Fisher, N. Cherman, A. Boyde, P. DenBesten, P.G. Robey, and S. Shi: Stem cell properties of human dental pulp stem cells. J. Dent. Res. 81, 531 (2002).

    Article  CAS  Google Scholar 

  34. D. Kim, J. Kim, H. Hyun, K. Kim, and S. Roh: A nanoscale ridge/groove pattern arrayed surface enhances adipogenic differentiation of human supernumerary tooth-derived dental pulp stem cells in vitro. Arch. Oral Biol. 59, 765 (2014).

    Article  CAS  Google Scholar 

  35. Y. Bin Lee, E.M. Kim, H. Byun, H. Kwan Chang, K. Jeong, Z.M. Aman, Y.S. Choi, J. Park, and H. Shin: Engineering spheroids potentiating cell-cell and cell-ECM interactions by self-assembly of stem cell microlayer. Biomaterials 165, 105 (2018).

    Article  Google Scholar 

  36. L. Moldovan, A. Barnard, C.-H. Gil, Y. Lin, M.B. Grant, M.C. Yoder, N. Prasain, and N.I. Moldovan: iPSC-derived vascular cell spheroids as building blocks for scaffold-free biofabrication. Biotechnol. J. 12, 1700444 (2017).

    Article  Google Scholar 

  37. R. Foty: A simple hanging drop cell culture protocol for generation of 3D spheroids. J. Vis. Exp., 6(51), e2720 (2011).

    Google Scholar 

  38. T. Liu, C.C. Chien, L. Parkinson, and B. Thierry: Advanced micromachining of concave microwells for long term on-chip culture of multicellular tumor spheroids. ACS Appl. Mater. Interfaces 6, 8090 (2014).

    Article  CAS  Google Scholar 

  39. J.M. Cha, H. Park, E.K. Shin, J.H. Sung, O. Kim, W. Jung, O.Y. Bang, and J. Kim: A novel cylindrical microwell featuring inverted-pyramidal opening for efficient cell spheroid formation without cell loss. Biofabrication 9, 035006 (2017).

    Article  Google Scholar 

  40. A. Zuchowska, E. Jastrzebska, M. Chudy, A. Dybko, and Z. Brzozka: 3D lung spheroid cultures for evaluation of photodynamic therapy (PDT) procedures in microfluidic lab-on-a-chip system. Anal. Chim. Acta 990, 110 (2017).

    Article  CAS  Google Scholar 

  41. K. Moshksayan, N. Kashaninejad, M.E. Warkiani, J.G. Lock, H. Moghadas, B. Firoozabadi, M.S. Saidi, and N.T. Nguyen: Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sens. Actuators, B 263, 151 (2018).

    Article  CAS  Google Scholar 

  42. T. Ren, W. Steiger, P. Chen, A. Ovsianikov, and U. Demirci: Enhancing cell packing in buckyballs by acoustofluidic activation. Biofabrication 12, 25033 (2020).

    Article  CAS  Google Scholar 

  43. M.W. Laschke and M.D. Menger: Life is 3D: boosting spheroid function for tissue engineering. Trends Biotechnol. 35, 133 (2017).

    Article  CAS  Google Scholar 

  44. D. Anton, H. Burckel, E. Josset, and G. Noel: Three-dimensional cell culture: a breakthrough in vivo. Int. J. Mol. Sci. 16, 5517 (2015).

    Article  Google Scholar 

  45. T. Korff and H.G. Augustin: Integration of endothelial cells in multicellular spheroids prevents apoptosis and induces differentiation. J. Cell Biol. 143, 1341 (1998).

    Article  CAS  Google Scholar 

  46. T. Korff, H. G. Augustin: Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J. Cell Sci. 112(19), 3249 (1999).

  47. M. Heiss, M. Hellström, M. Kalén, T. May, H. Weber, M. Hecker, H.G. Augustin, and T. Korff: Endothelial cell spheroids as a versatile tool to study angiogenesis in vitro. FASEB J. 29, 3076 (2015).

    Article  CAS  Google Scholar 

  48. J. Rouwkema, J. De Boer, and C.A. Van Blitterswijk: Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 12, 2685 (2006).

    Article  CAS  Google Scholar 

  49. A.W.L. Liew and Y. Zhang: In vitro pre-vascularization strategies for tissue engineered constructs-bioprinting and others. Int. J. Bioprint. 3, 3 (2017).

    Article  CAS  Google Scholar 

  50. D.N. Heo, M. Hospodiuk, and I.T. Ozbolat: Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering. Acta Biomater. 95, 348 (2019).

    Article  CAS  Google Scholar 

  51. A. Alajati, A.M. Laib, H. Weber, A.M. Boos, A. Bartol, K. Ikenberg, T. Korff, H. Zentgraf, C. Obodozie, R. Graeser, S. Christian, G. Finkenzeller, G.B. Stark, M. Héroult, and H. G: Augustin: Spheroid-based engineering of a human vasculature in mice. Nat. Methods 5, 439 (2008).

    Article  CAS  Google Scholar 

  52. L. Gutzweiler, S. Kartmann, K. Troendle, L. Benning, G. Finkenzeller, R. Zengerle, P. Koltay, G.B. Stark, and S. Zimmermann: Large scale production and controlled deposition of single HUVEC spheroids for bioprinting applications. Biofabrication 9, 025027 (2017).

    Article  Google Scholar 

  53. M. Inamori, H. Mizumoto, and T. Kajiwara: An approach for formation of vascularized liver tissue by endothelial cell-covered hepatocyte spheroid integration. Tissue Eng., Part A 15, 2029 (2009).

    Article  CAS  Google Scholar 

  54. F. Saleh, M. Whyte, and P. Genever: Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model. Eur. Cells Mater. 22, 242 (2011).

    Article  CAS  Google Scholar 

  55. W.L. Dissanayaka, L. Zhu, K.M. Hargreaves, L. Jin, and C. Zhang: In vitro analysis of scaffold-free prevascularized microtissue spheroids containing human dental pulp cells and endothelial cells. J. Endod. 41, 663 (2015).

    Article  Google Scholar 

  56. M. Zhu, Y. Wang, G. Ferracci, J. Zheng, N.J. Cho, and B.H. Lee: Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Sci. Rep. 9, 1 (2019).

    Google Scholar 

  57. H. Shirahama, B.H. Lee, L.P. Tan, and N.J. Cho: Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Sci. Rep. 6, 1 (2016).

    Article  Google Scholar 

  58. I. Mironi-Harpaz, D.Y. Wang, S. Venkatraman, and D. Seliktar: Photopolymerization of cell-encapsulating hydrogels: Crosslinking efficiency versus cytotoxicity. Acta Biomater. 8, 1838 (2012).

    Article  CAS  Google Scholar 

  59. D.E. Godar, C. Gurunathan, and I. Ilev: 3D bioprinting with UVA1 radiation and photoinitiator irgacure 2959: Can the ASTM standard L929 cells predict human stem cell cytotoxicity? Photochem. Photobiol. 95, 581 (2019).

    Article  CAS  Google Scholar 

  60. X. Li, S. Chen, J. Li, X. Wang, J. Zhang, N. Kawazoe, and G. Chen: 3D culture of chondrocytes in gelatin hydrogels with different stiffness. Polymers 8, 269 (2016).

    Article  Google Scholar 

  61. E. Hoch, T. Hirth, G.E.M. Tovar, and K. Borchers: Chemical tailoring of gelatin to adjust its chemical and physical properties for functional bioprinting. J. Mater. Chem. B 1, 5675 (2013).

    Article  CAS  Google Scholar 

  62. L. Zhou, G. Tan, Y. Tan, H. Wang, J. Liao, and C. Ning: Biomimetic mineralization of anionic gelatin hydrogels: Effect of degree of methacrylation. RSC Adv. 4, 21997 (2014).

    Article  CAS  Google Scholar 

  63. P. Occhetta, R. Visone, L. Russo, L. Cipolla, M. Moretti, and M. Rasponi: VA-086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3D cell embedding. J. Biomed. Mater. Res., Part A 103, 2109 (2015).

    Article  CAS  Google Scholar 

  64. C.F. Guimarães, L. Gasperini, A.P. Marques, and R.L. Reis: The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 5, 351 (2020).

    Article  Google Scholar 

  65. O. Hasturk, M. Ermis, U. Demirci, N. Hasirci, and V. Hasirci: Square prism micropillars on poly(methyl methacrylate) surfaces modulate the morphology and differentiation of human dental pulp mesenchymal stem cells. Colloids Surf., B 178, 44 (2019).

    Article  CAS  Google Scholar 

  66. F.J. Lv, R.S. Tuan, K.M.C. Cheung, and V.Y.L. Leung: Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells 32, 1408 (2014).

    Article  CAS  Google Scholar 

  67. B.A. Rodas-Junco, M. Canul-Chan, R.A. Rojas-Herrera, C. de-la-Peña, and G.I. Nic-Can: Stem cells from dental pulp: what epigenetics can do with your tooth. Front. Physiol. 8, 999 (2017).

    Article  Google Scholar 

  68. K. Iohara, L. Zheng, M. Ito, A. Tomokiyo, K. Matsushita, and M. Nakashima: Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells 24, 2493 (2006).

    Article  CAS  Google Scholar 

  69. Y.Y. Jo, H.J. Lee, S.Y. Kook, H.W. Choung, J.Y. Park, J.H. Chung, Y.H. Choung, E.S. Kim, H.C. Yang, and P.H. Choung: Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 13, 767 (2007).

    Article  CAS  Google Scholar 

  70. L.F. Pettersson, P.J. Kingham, M. Wiberg, and P. Kelk: In vitro osteogenic differentiation of human mesenchymal stem cells from jawbone compared with dental tissue. Tissue Eng. Regen. Med. 14, 763 (2017).

    Article  CAS  Google Scholar 

  71. T. Struys, M. Moreels, W. Martens, R. Donders, E. Wolfs, and I. Lambrichts: Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp- and umbilical cord-derived mesenchymal stem cells. Cells Tissues Organs 193, 366 (2011).

    Article  CAS  Google Scholar 

  72. J. Colle, P. Blondeel, A. De Bruyne, S. Bochar, L. Tytgat, C. Vercruysse, S. Van Vlierberghe, P. Dubruel, and H. Declercq: Bioprinting predifferentiated adipose-derived mesenchymal stem cell spheroids with methacrylated gelatin ink for adipose tissue engineering. J. Mater. Sci. Mater. Med. 31, 1 (2020).

    Article  Google Scholar 

  73. G. Bahcecioglu, N. Hasirci, B. Bilgen, and V. Hasirci: Hydrogels of agarose, and methacrylated gelatin and hyaluronic acid are more supportive for in vitro meniscus regeneration than three dimensional printed polycaprolactone scaffolds. Int. J. Biol. Macromol. 122, 1152 (2019).

    Article  CAS  Google Scholar 

  74. C. Kilic Bektas and V. Hasirci: Cell loaded 3D bioprinted GelMA hydrogels for corneal stroma engineering. Biomater. Sci. 8, 438 (2020).

    Article  Google Scholar 

  75. J.W. Nichol, S.T. Koshy, H. Bae, C.M. Hwang, S. Yamanlar, and A. Khademhosseini: Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536 (2010).

    Article  CAS  Google Scholar 

  76. N. Al Rifai, A. Hasan, F. Kobeissy, H. Gazalah, and J. Charara: Culture of PC12 neuronal cells in GelMA hydrogel for brain tissue engineering. In 2015 International Conference on Advances in Biomedical Engineering (ICABME) (IEEE Press, NY, USA, 2015), pp. 254–257.

  77. I. Noshadi, S. Hong, K.E. Sullivan, E. Shirzaei Sani, R. Portillo-Lara, A. Tamayol, S.R. Shin, A.E. Gao, W.L. Stoppel, L.D. Black, A. Khademhosseini, and N. Annabi: In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater. Sci. 5, 2093 (2017).

    Article  CAS  Google Scholar 

  78. T.S. Girton, T.R. Oegema, and R.T. Tranquillo: Exploiting glycation to stiffen and strengthen tissue equivalents for tissue engineering. J. Biomed. Mater. Res. 46, 87 (1999).

    Article  CAS  Google Scholar 

  79. T.S. Girton, T.R. Oegema, E.D. Grassl, B.C. Isenberg, and R.T. Tranquillo: Mechanisms of stiffening and strengthening in media-equivalents fabricated using glycation. J. Biomech. Eng. 122, 216 (2000).

    Article  CAS  Google Scholar 

  80. A. Jabłońska-Trypuć, M. Matejczyk, and S. Rosochacki: Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J. Enzyme Inhib. Med. Chem. 31, 177 (2016).

    Article  Google Scholar 

  81. C. Ries, V. Egea, M. Karow, H. Kolb, M. Jochum, and P. Neth: MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: Differential regulation by inflammatory cytokines. Blood 109, 4055 (2007).

    Article  CAS  Google Scholar 

  82. I.A.W. Ho, K.Y.W. Chan, W.H. Ng, C.M. Guo, K.M. Hui, P. Cheang, and P.Y.P. Lam: Matrix metalloproteinase 1 is necessary for the migration of human bone marrow-derived mesenchymal stem cells toward human glioma. Stem Cells 27, 1366 (2009).

    Article  CAS  Google Scholar 

  83. S.B. Anderson, C.C. Lin, D.V. Kuntzler, and K.S. Anseth: The performance of human mesenchymal stem cells encapsulated in cell-degradable polymer-peptide hydrogels. Biomaterials 32, 3564 (2011).

    Article  CAS  Google Scholar 

  84. D.M. Correia, J. Padrão, L.R. Rodrigues, F. Dourado, S. Lanceros-Méndez, and V. Sencadas: Thermal and hydrolytic degradation of electrospun fish gelatin membranes. Polym. Test 32, 995 (2013).

    Article  CAS  Google Scholar 

  85. T. Ahmad, H. Byun, J. Lee, S.K. Madhurakat Perikamana, Y.M. Shin, E.M. Kim, and H. Shin: Stem cell spheroids incorporating fibers coated with adenosine and polydopamine as a modular building blocks for bone tissue engineering. Biomaterials 230, 119652 (2020).

    Article  CAS  Google Scholar 

  86. C.E. Vorwald, S.S. Ho, J. Whitehead, and J.K. Leach: High-throughput formation of mesenchymal stem cell spheroids and entrapment in alginate hydrogels in Biomaterials for Tissue Engineering, Humana Press, NY, USA, 2018139–149.

    Google Scholar 

  87. C. Siltanen, M. Yaghoobi, A. Haque, J. You, J. Lowen, M. Soleimani, and A. Revzin: Microfluidic fabrication of bioactive microgels for rapid formation and enhanced differentiation of stem cell spheroids. Acta Biomater. 34, 125 (2016).

    Article  CAS  Google Scholar 

  88. K.C. Murphy, J. Whitehead, D. Zhou, S.S. Ho, and J.K. Leach: Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids. Acta Biomater. 64, 176 (2017).

    Article  CAS  Google Scholar 

  89. B. Lee, N. Lum, L. Seow, P. Lim, and L. Tan: Synthesis and characterization of types A and B gelatin methacryloyl for bioink applications. Materials 9, 797 (2016).

    Article  Google Scholar 

  90. J. Karbanová, T. Soukup, J. Suchánek, R. Pytlík, D. Corbeil, and J. Mokrý: Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs 193, 344 (2011).

    Article  Google Scholar 

  91. D.L. Alge, D. Zhou, L.L. Adams, B.K. Wyss, M.D. Shadday, E.J. Woods, T.M.G. Chu, and W.S. Goebel: Donor-matched comparison of dental pulp stem cells and bone marrow-derived mesenchymal stem cells in a rat model. J. Tissue Eng. Regen. Med. 4, 73 (2010).

    CAS  Google Scholar 

  92. J. Popko, A. Fernandes, D. Brites, and L.M. Lanier: Automated analysis of NeuronJ tracing data. Cytometry, Part A 75, 371 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges the Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering (METU BIOMATEN) for providing the facilities to carry our characterization experiments and Turkish Ministry of Development for BAP-08-11-KB.2016K-121520 funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menekse Ermis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermis, M. Photo-crosslinked gelatin methacrylate hydrogels with mesenchymal stem cell and endothelial cell spheroids as soft tissue substitutes. Journal of Materials Research 36, 176–190 (2021). https://doi.org/10.1557/s43578-020-00091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00091-4

Keywords

Navigation