Skip to main content
Log in

Fundamentals of ultrafast laser–material interaction

  • Ultrafast Laser Synthesis and Processing of Materials
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Short pulse laser irradiation has the ability to bring a material into a state of strong electronic, thermal, phase, and mechanical nonequilibrium and trigger a sequence of structural transformations leading to the generation of complex multiscale surface morphologies, unusual metastable phases, and microstructures that cannot be produced by any other means. In this article, we provide an overview of recent advancements and existing challenges in the understanding of the fundamental mechanisms of short pulse laser interaction with materials, including the material response to strong electronic excitation, ultrafast redistribution and partitioning of the deposited laser energy, the peculiarities of phase transformations occurring under conditions of strong superheating/undercooling, as well as laser-induced generation of crystal defects and modification of surface microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1996).

    Article  Google Scholar 

  2. R.R. Gattass, E. Mazur, Nat. Photonics 2, 219 (2008).

    Article  CAS  Google Scholar 

  3. A.Y. Vorobyev, C. Guo, Laser Photon. Rev. 7, 385 (2013).

    Article  CAS  Google Scholar 

  4. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Appl. Phys. A 79, 767 (2004).

    Article  CAS  Google Scholar 

  5. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, P. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin, Nature 410, 65 (2001).

    Article  CAS  Google Scholar 

  6. M. Hase, P. Fons, K. Mitrofanov, A.V. Kolobov, J. Tominaga, Nat. Commun. 6, 8367 (2015).

    Article  CAS  Google Scholar 

  7. N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, E.E.B. Campbell, Phys. Rev. B Condens. Matter 69, 054102 (2004).

    Article  CAS  Google Scholar 

  8. B. Rethfeld, K. Sokolowski-Tinten, D. von der Linde, S.I. Anisimov, Phys. Rev. B Condens. Matter 65, 092103 (2002).

    Article  CAS  Google Scholar 

  9. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. Lett. 91, 105701 (2003).

    Article  CAS  Google Scholar 

  10. K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S.I. Anisimov, Phys. Rev. Lett. 81, 224 (1998).

    Article  CAS  Google Scholar 

  11. A. Vailionis, E.G. Gamaly, V. Mizeikis, W. Yang, A.V. Rode, S. Juodkazis, Nat. Commun. 2, 445 (2011).

    Article  CAS  Google Scholar 

  12. L. Rapp, B. Haberl, C.J. Pickard, J.E. Bradby, E.G. Gamaly, J.S. Williams, A.V. Rode, Nat. Commun. 6, 7555 (2015).

    Article  CAS  Google Scholar 

  13. J. Narayan, A. Bhaumik, J. Appl. Phys. 118, 215303 (2015).

    Article  CAS  Google Scholar 

  14. A.Y. Vorobyev, C. Guo, Phys. Rev. B Condens. Matter 72, 195422 (2005).

    Article  CAS  Google Scholar 

  15. Y. Dai, M. He, H. Bian, B. Lu, X. Yan, G. Ma, Appl. Phys. A 106, 567 (2012).

    Article  CAS  Google Scholar 

  16. J.V. Oboňa, V. Ocelík, J.C. Rao, J.Z.P. Skolski, G.R.B.E. Römer, A.J. Huis in ‘t Veld, J.T.M. De Hosson, Appl. Surf. Sci. 303, 118 (2014).

    Article  CAS  Google Scholar 

  17. G. Paltauf, P.E. Dyer, Chem. Rev. 103, 487 (2003).

    Article  CAS  Google Scholar 

  18. E. Leveugle, D.S. Ivanov, L.V. Zhigilei, Appl. Phys. A 79, 1643 (2004).

    Article  CAS  Google Scholar 

  19. M.M. Martynyuk, Tech. Phys. 21, 430 (1976).

    Google Scholar 

  20. R. Kelly, A. Miotello, J. Appl. Phys. 87, 3177 (2000).

    Article  CAS  Google Scholar 

  21. N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001).

    Article  CAS  Google Scholar 

  22. C.-J. Lin, F. Spaepen, D. Turnbull, J. Non Cryst. Solids 61–62, 767 (1984).

  23. C. Wu, M.S. Christensen, J.-M. Savolainen, P. Balling, L.V. Zhigilei, Phys. Rev. B Condens. Matter 91, 035413 (2015).

    Article  CAS  Google Scholar 

  24. C. Wu, L.V. Zhigilei, J. Phys. Chem. C 120, 4438 (2016).

    Article  CAS  Google Scholar 

  25. X. Sedao, M.V. Shugaev, C. Wu, T. Douillard, C. Esnouf, C. Maurice, S. Reynaud, F. Pigeon, F. Garrelie, L.V. Zhigilei, J.-P. Colombier, ACS Nano 10, 6995 (2016).

    Article  CAS  Google Scholar 

  26. J.A. Alonso, J.M. Lopez, Mater. Lett. 4, 316 (1986).

    Article  CAS  Google Scholar 

  27. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B Condens. Matter 53, 1749 (1996).

    Article  CAS  Google Scholar 

  28. H.M. van Driel, Phys. Rev. B Condens. Matter 35, 8166 (1987).

    Article  Google Scholar 

  29. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).

    Google Scholar 

  30. M. Lenzner, F. Krausz, J. Krüger, W. Kautek, Appl. Surf. Sci. 154–155, 11 (2000).

  31. B. Rethfeld, Phys. Rev. B Condens. Matter 73, 035101 (2006).

    Article  CAS  Google Scholar 

  32. N. Itoh, A.M. Stoneham, Materials Modification by Electronic Excitation (Cambridge University Press, Cambridge, UK, 2000).

  33. G. Pacchioni, L. Skuja, D.L. Griscom, Eds., Defects in SiO2 and Related Dielectrics: Science and Technology (Kluwer Academic Publishers, Dordrecht, 2000).

  34. P. Martin, S. Guizard, P. Daguzan, G. Petite, P. D’Oliveira, P. Meynadier, M. Perdrix, Phys. Rev. B Condens. Matter 55, 5799 (1997).

    Article  CAS  Google Scholar 

  35. D. Grojo, M. Gertsvolf, S. Lei, T. Barillot, D.M. Rayner, P.B. Corkum, Phys. Rev. B Condens. Matter 81, 212301 (2010).

    Article  CAS  Google Scholar 

  36. G. Petite, S. Guizard, P. Martin, F. Quéré, Phys. Rev. Lett. 83, 5182 (1999).

    Article  CAS  Google Scholar 

  37. S.S. Mao, F. Quéré, S. Guizard, X. Mao, R.E. Russo, G. Petite, P. Martin, Appl. Phys. A 79, 1695 (2004).

    Article  CAS  Google Scholar 

  38. N.M. Bulgakova, V.P. Zhukov, Y.P. Meshcheryakov, L. Gemini, J. Brajer, D. Rostohar, T. Mocek, J. Opt. Soc. Am. B 31, C8 (2014).

    Article  CAS  Google Scholar 

  39. A. Naghilou, O. Armbruster, M. Kitzler, W. Kautek, J. Phys. Chem. C 119, 22992 (2015).

    Article  CAS  Google Scholar 

  40. B. Lin, H.E. Elsayed-Ali, Surf. Sci. 498, 275 (2002).

    Article  CAS  Google Scholar 

  41. B.J. Siwick, J.R. Dwyer, R.E. Jordan, R.J.D. Miller, Science 302, 1382 (2003).

    Article  CAS  Google Scholar 

  42. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevich, I. Uschmann, E. Förster, M. Kammler, M. Horn-von-Hoegen, D. von der Linde, Nature 422, 287 (2003).

    Article  CAS  Google Scholar 

  43. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. Lett. 98, 195701 (2007).

    Article  CAS  Google Scholar 

  44. Z. Lin, E. Leveugle, E.M. Bringa, L.V. Zhigilei, J. Phys. Chem. C 114, 5686 (2010).

  45. D.S. Ivanov, Z. Lin, B. Rethfeld, G.M. O’Connor, T.J. Glynn, L.V. Zhigilei, J. Appl. Phys. 107, 013519 (2010).

    Article  CAS  Google Scholar 

  46. P.P. Pronko, S.K. Dutta, J. Squier, J.V Rudd, D. Du, G. Mourou, Opt. Commun. 114, 106 (1995).

    Article  CAS  Google Scholar 

  47. J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 81, 325 (2005).

  48. D. Hwang, S.-G. Ryu, N. Misra, H. Jeon, C.P Grigoropoulos, Appl. Phys. A 96, 289 (2009).

    Article  CAS  Google Scholar 

  49. C. Huber, A. Trügler, U. Hohenester, Y. Prior, W. Kautek, Phys. Chem. Chem. Phys. 16, 2289 (2014).

    Article  CAS  Google Scholar 

  50. R.Z. Valiev, R.K. Islamgaliev, I.V Alexandrov, Prog. Mater. Sci. 45,103 (2000).

  51. D.C. Bufford, Y.M. Wang, Y. Liu, L. Lu, MRS Bull. 41, 286 (2016).

  52. T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331, 1587 (2011).

    CAS  Google Scholar 

  53. D. Jang, X. Li, H. Gao, J.R. Greer, Nat. Nanotechnol. 7, 594 (2012).

    Article  CAS  Google Scholar 

  54. X. Li, M. Dao, C. Eberl, A.M. Hodge, H. Gao, MRS Bull. 41, 298 (2016).

    Article  CAS  Google Scholar 

  55. Z. Lin, R.A. Johnson, L.V. Zhigilei, Phys. Rev. B Condens. Matter 77, 214108 (2008).

  56. X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, J.P. Hirth, Appl. Phys. Lett. 84, 1096 (2004).

    Article  CAS  Google Scholar 

  57. C. Wu, L.V. Zhigilei, Appl. Phys. A 114, 11 (2014).

    Article  CAS  Google Scholar 

  58. L.V. Zhigilei, B.J. Garrison, J. Appl. Phys. 88, 1281 (2000).

  59. D.S. Ivanov, V.P. Lipp, A. Blumenstein, F Kleinwort, V.P. Veiko, E. Yakovlev, V. Roddatis, M.E. Garcia, B. Rethfeld, J. Ihlemann, P. Simon, Phys. Rev. Appl. 4, 064006 (2015).

    Article  CAS  Google Scholar 

  60. A.A. Ionin, S.I. Kudryashov, L.V. Seleznev, D.V Sinitsyn, JETP Lett. 94, 753 (2011).

    Article  CAS  Google Scholar 

  61. M.B. Agranat, S.I. Anisimov, S.I. Ashitkov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, Y.V. Petrov, V.E. Fortov, V.A. Khokhlov, Appl. Surf. Sci. 253, 6276 (2007).

    Article  CAS  Google Scholar 

  62. R. Stoian, D. Ashkenasi, A. Rosenfeld, E.E.B. Campbell, Phys. Rev. B Condens. Matter 62,13167(2000).

  63. W.G. Roeterdink, L.B.F. Juurlink, O.P.H. Vaughan, J. Dura Diez, M. Bonn, A.W. Kleyn, Appl. Phys. Lett. 82, 4190 (2003).

    Article  CAS  Google Scholar 

  64. H. Dachraoui, W. Husinsky, G. Betz, Appl. Phys. A 83, 333 (2006).

    Article  CAS  Google Scholar 

  65. A. Kaplan, M. Lenner, R.E. Palmer, Phys. Rev. B Condens. Matter 76, 073401 (2007).

    Article  CAS  Google Scholar 

  66. N.M. Bulgakova, A.V. Bulgakov, V.P. Zhukov, W. Marine, A.Y. Vorobyev, C. Guo, Proc. SPIE 7005, 70050C (2008).

    Article  Google Scholar 

  67. M. Borghesi, L. Romagnani, A. Schiavi, D.H. Campbell, M.G. Haines, O. Willi, A.J. Mackinnon, M. Galimberti, L. Gizzi, R.J. Clarke, S. Hawkes, Appl. Phys. Lett. 82, 1529(2003).

Download references

Acknowledgements

M.V.S., C.W., and L.V.Z. acknowledge financial support from the National Science Foundation (NSF) through Grants CMMI-1301298 and CMMI-1436775 and computational support provided by the Oak Ridge Leadership Computing Facility (INCITE Project MAT130) and NSF through the Extreme Science and Engineering Discovery Environment (Project TGDMR110090). L.V.Z. and W.K. also acknowledge support from the Austrian Science Fund (FWF) through the Lise Meitner Programme (Project M 1984). N.B., D.S.I., and B.R. acknowledge support by the Deutsche Forschungsgemeinschaft (Projects RE 1141/14 and RE 1141/15). N.M.B. and T.J.-Y.D. acknowledge support of the state budget of the Czech Republic (Project L01602). T.J.-Y.D. also acknowledges funding from the European Commission for the Marie Skłodowska-Curie Individual Fellowship (Project 657424).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim V. Shugaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shugaev, M.V., Wu, C., Armbruster, O. et al. Fundamentals of ultrafast laser–material interaction. MRS Bulletin 41, 960–968 (2016). https://doi.org/10.1557/mrs.2016.274

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.274

Navigation