Skip to main content
Log in

Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The current study uses high-temperature differential scanning calorimetry to document the shift in phase-transformation temperature with particle size throughout a series of alloys in the zirconia–yttria system (0–1.5 mol% yttria). The tetragonal-to-monoclinic (T→M) phase-transformation temperature is seen to vary inversely with particle size. It is shown that a simple thermodynamic approach first proposed by Garvie predicts this inverse linear relationship. Subsequent determination of the key thermodynamic parameters therein (e.g., the surface and volume free energy, enthalpy, and entropy changes involved in the phase transformation) allows a complete predictive equation for the T→M phase transformation in the yttria–zirconia system to be developed as a function of particle size and yttria dopant level. The yttria–zirconia phase diagram is then redrawn with grain size as a third variable. It should be stressed that the current analysis is valid for particulate systems only; a parallel paper tackles the problem for fine-grained yttria–zirconia solids, where the approach is similar, but additional strain energy terms come into play.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ph. Buffat and J.P. Borel, Phys. Rev. A 13, 2287 (1976).

    Article  CAS  Google Scholar 

  2. A.N. Goldstein, C.M. Echer, and A.P. Alivisatos, Science 256, 1425 (1992).

    Article  CAS  Google Scholar 

  3. M. Hasegawa, M. Watabe, and K. Hoshino, Surf. Sci. 106, 10 (1981).

    Article  Google Scholar 

  4. R.P. Berman and A.E. Curzon, Can. J. Phys. 52, 923 (1974).

    Article  CAS  Google Scholar 

  5. M. Winterer, R. Nitsche, S.A.T. Redfern, W.W. Schmahl, and H. Hahn, Nanostructured Mater. 5, 679 (1995).

    Article  CAS  Google Scholar 

  6. R.C. Garvie, J. Phys. Chem. 82, 218 (1978).

    Article  CAS  Google Scholar 

  7. R.C. Garvie and M.V. Swain, J. Mater. Sci. 20, 1193 (1985).

    Article  CAS  Google Scholar 

  8. R.C. Garvie and M.C. Goss, J. Mater. Sci. 21, 1253 (1986).

    Article  CAS  Google Scholar 

  9. T. Chraska, A.H. King, and C.C. Berndt, Mater. Sci. Eng. A 286, 169 (2000).

    Article  Google Scholar 

  10. T. Chraska, A.H. King, C.C. Berndt, and J. Karthikeyan, in Phase Transformations and Systems Driven Far from Equilibrium, edited by E. Ma, P. Bellon, M. Atzmon, and R. Trivedi (Mater. Res. Soc. Symp. Proc. 481, Warrendale, PA, 1998), pp. 613–617.

  11. G. Skandan, H. Hahn, M. Roddy, and W.R. Cannnon, J. Am. Ceram. Soc. 77, 1706 (1994).

    Article  CAS  Google Scholar 

  12. R. Nitsche, M. Winterer, and H. Hahn, Nanostructured Mater. 6, 679 (1995).

    Article  Google Scholar 

  13. Z. Ji, J.A. Haynes, M.K. Ferber, and J.M. Rigsbee, Surf. Coat. Technol. 135, 109 (2001).

    Article  CAS  Google Scholar 

  14. E.K. Akdogan, W. Mayo, A. Safari, C.J. Rawn, and E.A. Payzant, Ferroelectrics 223, 11 (1999).

    Article  CAS  Google Scholar 

  15. M.H. Frey and D.A. Payne, Phys. Rev. B 54, 3158 (1996).

    Article  CAS  Google Scholar 

  16. B.D. Begg, E.R. Vance, and J. Nowotny, J. Am. Ceram. Soc. 77, 3186 (1982).

    Article  Google Scholar 

  17. S. Schlag, H-F. Eicke, and W.B. Stern, Ferroelectrics 173, 351 (1995).

    Article  CAS  Google Scholar 

  18. G.A. Rossetti, J.P. Cline, and A. Navrotsky, J. Mater. Res. 13, 3197 (1998).

    Article  CAS  Google Scholar 

  19. J.M. McHale, A. Auroux, A.J. Perrotta, and A. Navrotsky, Science 277, 788 (1997).

    Article  CAS  Google Scholar 

  20. H. Zhang and J.F. Banfield, in Phase Transformations and Systems Driven Far from Equilibrium, edited by E. Ma, P. Bellon, M. Atzmon, and R. Trivedi (Mater Res. Soc. Symp. Proc. 481, Warrendale, PA, 1998), pp. 619–624.

  21. H. Zhang and J.F. Banfield, J. Mater. Chem. 8, 2073 (1998).

    Article  CAS  Google Scholar 

  22. H. Zhang and J.F. Banfield, J. Phys. Chem. B 104, 3481 (2000).

    Article  CAS  Google Scholar 

  23. A.A. Gribb and J.F. Banfield, Am. Miner. 82, 717 (1997).

    Article  CAS  Google Scholar 

  24. H. Hahn, G. Skandan, and J.C. Parker, Scripta Metall. Mater. 25, 2389 (1991).

    Article  Google Scholar 

  25. G. Skandan, C.M. Foster, J. Frase, M.N. Ali, and J.C. Parker, Nanostruct. Mater. 1, 313 (1992).

    Article  CAS  Google Scholar 

  26. A.P. Alivasatos, Ber Bunsenges Phys. Chem. 101, 1573 (1997).

    Article  Google Scholar 

  27. C-C. Chen, A.B. Herhold, C.S. Johnson, and A.P. Alivisatos, Science 276, 398 (1997).

    Article  CAS  Google Scholar 

  28. S.H. Tolbert and A.P. Alivisatos, Science 265, 273 (1994).

    Article  Google Scholar 

  29. H. Sato, O. Kitakami, T. Sakurai, Y. Shimada, Y. Otani, and K. Fukamichi, J. Appl. Phys. 81, 1858 (1997).

    Article  CAS  Google Scholar 

  30. W. Shi, J. Kong, H. Shen, G. Du, W. Yao, and Z. Qi, Vacuum 42, 1070 (1991).

    Article  Google Scholar 

  31. K. Asaka, Y. Hirotsu, and T. Tadaki, Mater. Sci. Eng. A 272–275, 262 (1999).

    Article  Google Scholar 

  32. J.A. Kittle, Q.Z. Hong, H. Yang, N. Yu, S.B. Samavedam, and M.A. Gribelyuk, Thin Solid Films 332, 404 (1998).

    Article  Google Scholar 

  33. P.I. Gouma, P.K. Dutta, and M.J. Mills, Structural Stability of Titania Thin Films. Nanostructured Mater. 11, 1231 (1999).

    CAS  Google Scholar 

  34. S. Schlag and H-F. Eicke, Solid State Commun. 91, 883 (1994).

    Article  CAS  Google Scholar 

  35. M.J. Mayo, A. Suresh, and W.D. Porter, Thermodynamics for Nanosystems: Grain and Particle Size Dependent Phase Diagrams. Rev. Adv. Mater. Sci. (in press).

  36. M. Çiftçioglu and M.J. Mayo, in Superplasticity in Metals, Ceramics, and Intermetallics, edited by M. Kobayashi, M.J. Mayo, and J. Wadsworth (Mater. Res. Soc. Symp. Proc. 196, Pittsburgh, PA, 1990), pp. 77–86.

  37. H.P. Klug and L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, (Wiley, New York, 1974).

  38. R.P. Ingel and D. Lewis III, J. Am. Ceram. Soc. 69, 325 (1986).

    Article  CAS  Google Scholar 

  39. R.C. Garvie and P.S. Nicholson, J. Am. Ceram. Soc. 55, 303 (1972).

    Article  CAS  Google Scholar 

  40. A. Suresh, MS Thesis, Pennsylvania State University, University Park, PA, 2001.

  41. P. Li, I-W. Chen, and J.E. Penner-Hahn, J. Am. Ceram. Soc. 77, 1281 (1994).

    Article  CAS  Google Scholar 

  42. W.D. Kingery, H.K. Bowen, and D.R. Uhlman, Introduction to Ceramics (John Wiley & Sons, New York, 1976).

  43. G.S.A.M. Theunissen, A.J.A. Winnubst, and A.J. Burggraaf, J. Eur. Ceram. Soc. 9, 251 (1992).

    Article  CAS  Google Scholar 

  44. X. Li and W-H. Shih, J. Am. Ceram. Soc. 80, 2844 (1997).

    Article  CAS  Google Scholar 

  45. M. Natarajan, A.R. Dar, and C.N.R. Rao, Trans. Faraday Soc. 65, 3081 (1969).

    Article  CAS  Google Scholar 

  46. Y-M. Chiang, I.P. Smyth, C.D. Terwilliger, W.T. Petuskey, and J.A. Eastman, Nanostructured Mater. 1, 235 (1992).

    Article  CAS  Google Scholar 

  47. C.D. Terwilliger and Y-M. Chiang, J. Am. Ceram. Soc. 78, 2045 (1995).

    Article  CAS  Google Scholar 

  48. H. Holmes, E. Fuller, Jr., and R. Gammage, J. Phys. Chem. 76, 1497 (1972).

    Article  CAS  Google Scholar 

  49. H.G. Scott, J. Mater. Sci. 10, 1527 (1975).

    Article  CAS  Google Scholar 

  50. D.J. Green, R.J.H. Hannink, and M.V. Swain, Transformation Toughening of Ceramics (CRC Press, Boca Raton, FL, 1988).

  51. R. Srinivasan, L. Rice, and B.H. Davis, J. Am. Ceram. Soc. 73, 3528 (1990).

    Article  CAS  Google Scholar 

  52. H.S. Maiti, K.V.G.K. Gokhale, and E.C. Subbarao, J. Am. Ceram. Soc. 55, 317 (1972).

    Article  CAS  Google Scholar 

  53. W.Z. Zhu, Ceram. Int. 22, 389 (1996).

    Article  CAS  Google Scholar 

  54. K. Fukuda, E. Iizuka, H. Taguchi, and S. Ito, J. Am. Ceram. Soc. 81, 2729 (1998).

    Article  CAS  Google Scholar 

  55. R.N. Patil and E.C. Subbarao, Acta Crystallogr. A 26, 535 (1970).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merrilea J. Mayo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suresh, A., Mayo, M.J. & Porter, W.D. Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders. Journal of Materials Research 18, 2912–2921 (2003). https://doi.org/10.1557/JMR.2003.0406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0406

Navigation