Skip to main content

Genetic Suppressor Elements in the Characterization and Identification of Tumor Suppressor Genes

  • Protocol
Tumor Suppressor Genes

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 222))

  • 925 Accesses

Abstract

The subject of the present chapter is the genetic suppressor element (GSE) methodology, a functional genomics platform for identifying and characterizing genes involved in different cellular phenotypes, and the applications of this methodology to the study of tumor suppressor genes (TSG). In this overview, we will first describe the principles and basic elements of GSE selection and then concentrate on the methods and examples for using this methodology to identify and analyze TSGs. For detailed “cookbook” protocols of methods used in GSE selection, we refer the reader to previously published methodologic works (1,2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gudkov, A. V. and Roninson, I. B. (1997). Isolation of genetic suppressor elements (GSEs) from random fragment cDNA libraries in retroviral vectors, in Methods in Molecular Biology, Vol. 69: cDNA Library Protocols (Cowell, I. G. and Austin, C. A., eds.) Humana Press, Totowa, NJ, pp. 221–240.

    Google Scholar 

  2. Roninson, I. B., Zuhn, D., Ruth, A., and de Graaf, D. (1998) Isolation of altered-function mutants and genetic suppressor elements of multidrug transporter P-glycoprotein by expression selection from retroviral libraries. Meth. Enzymol. 292, 225–248.

    Article  PubMed  CAS  Google Scholar 

  3. Holzmayer, T. A., Pestov, D. G., and Roninson, I. B. (1992) Isolation of dominant negative mutants and inhibitory antisense RNA sequences by expression selection of random DNA fragments. Nucleic Acids Res. 20, 711–717.

    Article  PubMed  CAS  Google Scholar 

  4. Roninson, I. B., Gudkov, A. V., Holzmayer, T. A., et al. (1995) Genetic suppressor elements: new tools for molecular oncology. Cancer Res. 55, 4023–4028.

    PubMed  CAS  Google Scholar 

  5. Herskowitz, I. (1987) Functional inactivation of genes by dominant negative mutations. Nature 329, 219–222.

    Article  PubMed  CAS  Google Scholar 

  6. Garkavtsev, I., Kazarov, A., Gudkov, A. V., and Riabowol, K. (1996) Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat. Genet. 14, 415–420.

    Article  PubMed  CAS  Google Scholar 

  7. Lisitsyn, N., Lisitsyn, N., and Wigler, M. (1993) Cloning the differences between two complex genomes. Science 259, 946–951.

    Article  PubMed  CAS  Google Scholar 

  8. Gudkov, A. V., Kazarov, A. R., Thimmapaya, R., Axenovich, S., Mazo, I., and Roninson, I. B. (1994) Cloning mammalian genes by expression selection of genetic suppressor elements: association of kinesin with drug resistance and cell immortalization. Proc. Natl. Acad. Sci. USA 91, 3744–3748.

    Article  PubMed  CAS  Google Scholar 

  9. Patanjali, S. R., Parimoo, S., and Weissman, S. M. (1991) Construction of a uniform abundance (normalized) cDNA library. Proc. Natl. Acad. Sci. USA 88, 1943–1947.

    Article  PubMed  CAS  Google Scholar 

  10. Diatchenko, L., Lau, Y-F. C., Campbell, A. P., et al. (1996) Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93, 6025–6030.

    Article  PubMed  CAS  Google Scholar 

  11. Raveh, T., Berissi, H., Eisenstein, M., Spivak, T., and Kimchi, A. (2000) A functional genetic screen identifies regions at the C-terminal tail and death-domain of death-associated protein kinase that are critical for its proapoptotic activity. Proc. Natl. Acad. Sci. USA 97, 1572–1577.

    Article  PubMed  CAS  Google Scholar 

  12. Caponigro, G., Abedi, M. R., Hurlburt, A. P., Maxfield, A., Judd, W., and Kamb, A. (1998) Transdominant genetic analysis of a growth control pathway. Proc. Natl. Acad. Sci. USA 95, 7508–7513.

    Article  PubMed  CAS  Google Scholar 

  13. Mittelman, J. M. (2001) Generation of gene-supressing peptides from genetic suppressor elements. Ph. D. Thesis, University of Illinois at Chicago.

    Google Scholar 

  14. Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D. (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396.

    Article  PubMed  CAS  Google Scholar 

  15. Schott, B., Iraj, E. S., and Roninson, I. B. (1996) Effects of infection rate and selection pressure on gene expression from an internal promoter of a double-gene retroviral vector. Somat. Cell Mol. Genet. 22, 291–309.

    Article  PubMed  CAS  Google Scholar 

  16. Levenson, V. V., Lausch, E., Kirschling, D. J., et al. (1999) A combination of genetic suppressor elements produces resistance to drugs inhibiting DNA replication. Somat. Cell Mol. Genet. 25, 9–26.

    Article  PubMed  CAS  Google Scholar 

  17. Miller, A. D. and Rosman, G. J. (1989) Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980–986.

    PubMed  CAS  Google Scholar 

  18. Chang, B. D. and Roninson, I. B. (1996) Inducible retroviral vectors regulated by lac repressor in mammalian cells. Gene 183, 137–142.

    Article  PubMed  CAS  Google Scholar 

  19. Kandel, E. S., Chang, B. D., Schott, B., Shtil, A. A., Gudkov, A. V., and Roninson, I. B. (1997) Applications of green fluorescent protein as a marker of retroviral vectors. Somat. Cell Mol. Genet. 23, 325–340.

    Article  PubMed  CAS  Google Scholar 

  20. Ossovskaya, V. S., Mazo, I. A., Chernov, M. V., et al. (1996) Use of genetic suppressor elements to dissect distinct biological effects of separate p53 domains. Proc. Natl. Acad. Sci. USA 93, 10309–10314.

    Article  PubMed  CAS  Google Scholar 

  21. Jiang, X. R., Jimenez, G., Chang, E., et al. (1999) Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat. Genet. 21, 111–114.

    Article  PubMed  CAS  Google Scholar 

  22. Morales, C. P., Holt, S. E., Ouellette, M., et al. (1999) Absence of cancer-associated changes in human fibroblasts immortalized with telomerase. Nat. Genet. 21, 115–118.

    Article  PubMed  CAS  Google Scholar 

  23. Pestov, D. G. and Lau, L. F. (1994) Genetic selection of growth-inhibitory sequences in mammalian cells. Proc. Natl. Acad. Sci. USA 91, 12549–12553.

    Article  PubMed  CAS  Google Scholar 

  24. Albritton, L. M., Tseng, L., Scadden, D., and Cunningham, J. M. (1989) A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57, 659–666.

    Article  PubMed  CAS  Google Scholar 

  25. Dunn, S. J., Park, S. W., Sharma, V., et al. (1999) Isolation of efficient antivirals: genetic suppressor elements against HIV-1. Gene Ther. 6, 130–137.

    Article  PubMed  CAS  Google Scholar 

  26. Zuhn, D. L. (1996) Genetic suppressor elements inhibiting P-glycoprotein function. Ph. D. Thesis, University of Illinois at Chicago.

    Google Scholar 

  27. Stetten, G., Davidson, R. L., and Latt, S. A. (1977) 33258 Hoechst enhances the sensitivity of the bromodeoxyuridine-light method of isolating conditional lethal mutants. Exp. Cell Res. 108, 447–452.

    Article  PubMed  CAS  Google Scholar 

  28. Tarasewicz, D. (1995) Inhibition of BCL-2 with genetic suppressor elements. Ph. D. Thesis, University of Illinois at Chicago.

    Google Scholar 

  29. Axenovich, S. A., Kazarov, A. R., Boiko, A. D., Armin, G., Roninson, I. B., and Gudkov, A. V. (1998) Altered expression of ubiquitous kinesin heavy chain results in resistance to etoposide and hypersensitivity to colchicine: mapping of the domain associated with drug response. Cancer Res. 58, 3423–3428.

    PubMed  CAS  Google Scholar 

  30. Gudkov, A. V., Zelnick, C., Kazarov, A. R., et al. (1993) Isolation of genetic suppressor elements, inducing resistance to topoisomerase II-interactive cytotoxic drugs, from human topoisomerase II cDNA. Proc. Natl. Acad. Sci. USA 90, 3231–3235.

    Article  PubMed  CAS  Google Scholar 

  31. Carnero, A., Hudson, J. D., Hannon, G. J., and Beach, D. H. (2000) Transdominant genetic analysis of a growth control pathway. Nucleic Acids Res. 28, 2234–2241.

    Article  PubMed  CAS  Google Scholar 

  32. Garkavtsev, I. and Riabowol, K. (1997) Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor. Mol. Cell. Biol. 17, 2014–2019.

    PubMed  CAS  Google Scholar 

  33. Schott, B., Kandel, E. S., and Roninson, I. B. (1997) Efficient recovery and regeneration of integrated retroviruses. Nucleic Acids Res. 25, 2940–2942

    Article  PubMed  CAS  Google Scholar 

  34. Weinberg, R. A. (1991) Tumor suppressor genes. Science 254, 1138–1146.

    Article  PubMed  CAS  Google Scholar 

  35. Gottlieb, T. M. and Oren, M. (1996) p53 in growth control and neoplasia. Biochim. Biophys. Acta 1287, 77–102.

    PubMed  Google Scholar 

  36. Gottlieb, T. M. and Oren, M. (1998) p53 and apoptosis. Semin. Cancer Biol. 8, 359–368.

    Article  PubMed  CAS  Google Scholar 

  37. Lowe, S. W. (1999) Activation of p53 by oncogenes. Endocr. Relat. Cancer 6, 45–48.

    Article  PubMed  CAS  Google Scholar 

  38. Zheng, L., Li, S., Boyer, T. G., and Lee, W. H. (2000). Lessons learned from BRCA1 and BRCA2. Oncogene 19, 6159–6175.

    Article  PubMed  CAS  Google Scholar 

  39. Kastan, M. B. and Lim, D. S. (2000) The many substrates and functions of ATM. Nat. Rev. Mol. Cell Biol. 1, 179–186.

    Article  PubMed  CAS  Google Scholar 

  40. Land, H., Parada, L. F., and Weinberg, R. A. (1983) Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304, 596–602.

    Article  PubMed  CAS  Google Scholar 

  41. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602.

    Article  PubMed  CAS  Google Scholar 

  42. van Lohuizen, M., Verbeek, S., Scheijen, B., Wientjens, E., van der Gulden, H., and Berns, A. (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65, 737–752.

    Article  PubMed  Google Scholar 

  43. Lima, L. and Macieira-Coelho, A. (1972) Parameters of aging in chicken embryo fibroblasts cultivated in vitro. Exp. Cell Res. 70, 279–284.

    Article  PubMed  CAS  Google Scholar 

  44. White, A. E., Livanos, E. M., and Tlsty, T. D. (1994) Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev. 8, 666–677.

    Article  PubMed  CAS  Google Scholar 

  45. Weinberg, R. A. (1995) The molecular basis of oncogenes and tumor suppressor genes. Ann. N.Y. Acad. Sci. 758, 331–338.

    Article  PubMed  CAS  Google Scholar 

  46. Chang, B. D., Xuan, Y., Broude, E. V., et al. (1999) Role of p53 and p21waf1/cip1 in senescence-like terminal proliferation arrest induced in human tumor cells by chemotherapeutic drugs. Oncogene 18, 4808–4818.

    Article  PubMed  CAS  Google Scholar 

  47. Rokhlin, O. W., Gudkov, A. V., Kwek, S. S., Glover, R. A., Gewies, A. S., and Cohen, M. B. (2000) p53 is involved in tumor necrosis factor-alpha-induced apoptosis in the human prostatic carcinoma cell line LNCaP. Oncogene 19, 1959–1968.

    Article  PubMed  CAS  Google Scholar 

  48. Gallagher, W. M., Cairney, M., Schott, B., Roninson, I. B., and Brown, R. (1997) Identification of p53 genetic suppressor elements which confer resistance to cisplatin. Oncogene 14, 185–193.

    Article  PubMed  CAS  Google Scholar 

  49. Helbing, C. C., Veillette, C., Riabowol, K., Johnston, R. N., and Garkavtsev, I. (1997) A novel candidate tumor suppressor, ING1, is involved in the regulation of apoptosis. Cancer Res. 57, 1255–1258.

    PubMed  CAS  Google Scholar 

  50. Garkavtsev, I. V., Grigorian, I. A., Ossovskaya, V. S., Chumakov, P. M., and Gudkov, A. V. (1998) A candidate tumor suppressor p33ING1 cooperates with p53 in cell growth control. Nature 391, 295–298.

    Article  PubMed  CAS  Google Scholar 

  51. Zeremski, M., Hill, J. E., Grigorian, I. A., et al. (1999) Structure and regulation of the mouse ing1 gene: three alternative transcripts encode two PHD finger proteins that have opposite effects on p53 function. J. Biol. Chem. 274, 32171–32181.

    Article  Google Scholar 

  52. Skowyra, D., Zeremski, M., Neznanov, N., et al. (2001) Differential association of products of alternative transcripts of the candidate tumor suppressor ING1 with the mSin3/HDAC1 transcriptional corepressor complex. J. Biol. Chem. 276, 8734–8739.

    Article  PubMed  CAS  Google Scholar 

  53. Mazo, I. A. (1997) Isolation of genetic suppressor elements promoting neoplastic transformation. Ph. D. Thesis, University of Illinois at Chicago.

    Google Scholar 

  54. Fischer, G. A., Clementi, E. Raichman, M., Sudhof, T., Ullrich, A., and Meldolesi, J. (1994) Stable expression of truncated inositol 1,4,5-trisphosphate receptor subunits in 3T3 fibroblasts. Coordinate signaling changes and differential suppression of cell growth and transformation. J. Biol. Chem. 269, 19216–19224.

    PubMed  CAS  Google Scholar 

  55. Nikiforov, M. N., Ossovskaya, V. S., Hagen, K., Lowe, S., Deichman, G. I., and Gudkov, A. V. (1996) p53 modulation of anchorage independent growth and experimental metastasis. Oncogene 13, 1709–1719.

    PubMed  CAS  Google Scholar 

  56. Lowe, S. W., Ruley, H. E., Jacks, T., and Housman, D. E. (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74, 957–967.

    Article  PubMed  CAS  Google Scholar 

  57. Vale, R. D. and Fletterick, R. J. (1997) The design plan of kinesin motors. Annu. Rev. Cell Dev. Biol. 13, 745–777.

    Article  PubMed  CAS  Google Scholar 

  58. Reilein, A. R., Rogers, S. L., Tuma, M. C., and Gelfand, V. I. (2001) Regulation of molecular motor proteins. Int. Rev. Cytol. 204, 179–238.

    Article  PubMed  CAS  Google Scholar 

  59. Komarova, E. A., Diatchenko, L., Rokhlin, O. W., et al. (1998) Stress-induced secretion of growth inhibitors: a novel growth regulatory function of p53. Oncogene 17, 1089–1096.

    Article  PubMed  CAS  Google Scholar 

  60. Qazilbash, M. H., Xiao, X., Seth, P., Cowan, K. H., and Walsh, C. E. (1997) Cancer gene therapy using a novel adeno-associated virus vector expressing human wild-type p53. Gene Ther. 4, 675–682.

    Article  PubMed  CAS  Google Scholar 

  61. Tenson, T., DeBlasio, A., and Mankin, A. (1996). A functional peptide encoded in the Escherichia coli 23S rRNA. Proc. Natl. Acad. Sci. USA 93, 5641–5646.

    Article  PubMed  CAS  Google Scholar 

  62. Levenson, V. V., Davidovich, I. A., and Roninson, I. B. (2000). Pleiotropic resistance to DNA-interactive drugs is associated with increased expression of genes involved in DNA replication, repair and stress response. Cancer Res. 60, 5027–5030.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Humana Press Inc.

About this protocol

Cite this protocol

Roninson, I.B., Gudkov, A.V. (2003). Genetic Suppressor Elements in the Characterization and Identification of Tumor Suppressor Genes. In: El-Deiry, W.S. (eds) Tumor Suppressor Genes. Methods in Molecular Biology™, vol 222. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-328-3:413

Download citation

  • DOI: https://doi.org/10.1385/1-59259-328-3:413

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-0-89603-986-5

  • Online ISBN: 978-1-59259-328-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics