Skip to main content

Advertisement

Log in

99mTc-Labeled, Colistin Encapsulated, Theranostic Liposomes for Pseudomonas aeruginosa Infection

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Infectious diseases are still the major issue not only due to antibiotic resistance but also causing deaths if not diagnosed at early-stages. Different approaches including nanosized drug delivery systems and theranostics are researched to overcome antibiotic resistance, decrease the side effects of antibiotics, improve the treatment response, and early diagnose. Therefore, in the present study, nanosized, radiolabeled with 99mTc, colistin encapsulated, neutral and cationic liposome formulations were prepared as the theranostic agent for Pseudomonas aeruginosa infections. Liposomes exhibited appropriate physicochemical properties thanks to their nano-particle size (between 173 and 217 nm), neutral zeta potential value (about − 6.5 and 2.8 mV), as well as encapsulation efficiency of about 75%. All liposome formulations were radiolabeled with over 90% efficiency, and the concentration of stannous chloride was found as 1 mg.mL−1 to obtain maximum radiolabeling efficiency. In alamar blue analysis, neutral liposome formulations were found more biocompatible compared with the cationic formulations. Neutral colistin encapsulated liposomes were found to be more effective against P. aeruginosa strain according to their time-dependent antibacterial effect, in addition to their highest bacterial binding capacity. As conclusion, theranostic, nanosized, colistin encapsulated, neutral liposome formulations were found as promising agents for the imaging and treating of P. aeruginosa infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Authors can confirm that all relevant data are included in the article.

References

  1. Alonso B, Fernández-Barat L, Di Domenico EG, Marín M, Cercenado E, Merino I, et al. Characterization of the virulence of Pseudomonas aeruginosa strains causing ventilator-associated pneumonia. BMC Infect Dis. 2020;20(1):909. https://doi.org/10.1186/s12879-020-05534-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paz-Zarza VM, Mangwani-Mordani S, Martínez-Maldonado A, Álvarez-Hernández D, Solano-Gálvez SG, Vázquez-López R. Pseudomonas aeruginosa: pathogenicity and antimicrobial resistance in urinary tract infection. Rev Chilena Infectol. 2019;36(2):180–9. https://doi.org/10.4067/s0716-10182019000200180.

    Article  PubMed  Google Scholar 

  3. Al Dawodeyah HY, Obeidat N, Abu-Qatouseh LF, Shehabi AA. Antimicrobial resistance and putative virulence genes of Pseudomonas aeruginosa isolates from patients with respiratory tract infection. Germs. 2018;8(1):31–40. https://doi.org/10.18683/germs.2018.1130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pont S, Janet-Maitre M, Faudry E, Cretin F, Attrée I. Molecular mechanisms involved in Pseudomonas aeruginosa bacteremia. In: Filloux A, Ramos J-L, editors. Pseudomonas aeruginosa: biology, pathogenesis and control strategies. Cham: Springer International Publishing; 2022. p. 325–45.

    Chapter  Google Scholar 

  5. Behzadi P, Baráth Z, Gajdács M. It’s not easy being green: a narrative review on the microbiology, virulence and therapeutic prospects of multidrug-resistant Pseudomonas aeruginosa. Antibiotics. 2021;10(1):42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Losito AR, Raffaelli F, Del Giacomo P, Tumbarello M. New drugs for the treatment of Pseudomonas aeruginosa infections with limited treatment options: a narrative review. Antibiotics. 2022;11(5):579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Talebi Bezmin Abadi A, Rizvanov AA, Haertlé T, Blatt NL. World Health Organization report: current crisis of antibiotic resistance. BioNanoScience. 2019;9(4):778–88. https://doi.org/10.1007/s12668-019-00658-4.

  8. El-Sayed Ahmed MAE, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB. Colistin and its role in the era of antibiotic resistance: an extended review (2000–2019). Emerg Microbes Infect. 2020;9(1):868–85. https://doi.org/10.1080/22221751.2020.1754133.

  9. Andrade FF, Silva D, Rodrigues A, Pina-Vaz C. Colistin update on its mechanism of action and resistance, present and future challenges. Microorganisms. 2020;8(11):1716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barut Selver O, Egrilmez S, Hasanov S, Yilmaz Dag M, Tunger A. The utility of colistin in multiple drug-resistant Pseudomonas aeruginosa bacterial keratitis in a Kaposi’s sarcoma patient. Turk J Ophthalmol. 2019;49(4):220–3. https://doi.org/10.4274/tjo.galenos.2019.79999.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Martis N, Leroy S, Blanc V. Colistin in multi-drug resistant Pseudomonas aeruginosa blood-stream infections: a narrative review for the clinician. J Infect. 2014;69(1):1–12. https://doi.org/10.1016/j.jinf.2014.03.001.

    Article  PubMed  Google Scholar 

  12. Karpuz M, Silindir-Gunay M. Lipid-based drug delivery systems and their role in infection and inflammation imaging. In: Sana J, Sana J editors. Nanoengineering of Biomaterials Weinheim: Wiley-VCH; 2022. p. 469–503.

  13. Karpuz M, Silindir-Gunay M, Ozer AY, Ozturk SC, Yanik H, Tuncel M, et al. Diagnostic and therapeutic evaluation of folate-targeted paclitaxel and vinorelbine encapsulating theranostic liposomes for non-small cell lung cancer. Eur J Pharm Sci. 2021;156:105576. https://doi.org/10.1016/j.ejps.2020.105576.

  14. Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C. 2019;98:1252–76. https://doi.org/10.1016/j.msec.2019.01.066.

    Article  CAS  Google Scholar 

  15. Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-based drug delivery or targeting to eradicate bacteria for infection mitigation: a review of recent advances. Front Chem. 2020;8:286. https://doi.org/10.3389/fchem.2020.00286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khumaini Mudhar Bintang MA, Tipmanee V, Srichana T. Colistin sulfate-sodium deoxycholate sulfate micelle formulations; molecular interactions, cell nephrotoxicity and bioactivity. J Drug Deliv Sci Technol. 2023;79:104091. https://doi.org/10.1016/j.jddst.2022.104091.

  17. Menina S, Eisenbeis J, Kamal MAM, Koch M, Bischoff M, Gordon S, et al. Bioinspired liposomes for oral delivery of colistin to combat intracellular infections by Salmonella enterica. Adv Healthc Mater. 2019;8(17):1900564. https://doi.org/10.1002/adhm.201900564.

    Article  CAS  Google Scholar 

  18. Aboumanei MH, Mahmoud AF, Motaleb MA. Formulation of chitosan coated nanoliposomes for the oral delivery of colistin sulfate: in vitro characterization, (99m)Tc-radiolabeling and in vivo biodistribution studies. Drug Dev Ind Pharm. 2021;47(4):626–35. https://doi.org/10.1080/03639045.2021.1908334.

    Article  CAS  PubMed  Google Scholar 

  19. Yu S, Wang S, Zou P, Chai G, Lin Y-W, Velkov T, et al. Inhalable liposomal powder formulations for co-delivery of synergistic ciprofloxacin and colistin against multi-drug resistant gram-negative lung infections. Int. J. Pharm. 2020;575:118915. https://doi.org/10.1016/j.ijpharm.2019.118915.

  20. Scutera S, Argenziano M, Sparti R, Bessone F, Bianco G, Bastiancich C, et al. Enhanced antimicrobial and antibiofilm effect of new colistin-loaded human albumin nanoparticles. Antibiotics (Basel). 2021;10(1). https://doi.org/10.3390/antibiotics10010057.

  21. Sans-Serramitjana E, Fuste E, Martinez-Garriga B, Merlos A, Pastor M, Pedraz JL, et al. Killing effect of nanoencapsulated colistin sulfate on Pseudomonas aeruginosa from cystic fibrosis patients. J Cyst Fibros. 2016;15(5):611–8. https://doi.org/10.1016/j.jcf.2015.12.005.

    Article  CAS  PubMed  Google Scholar 

  22. Ady J, Fong Y. Imaging for infection: from visualization of inflammation to visualization of microbes. Surg Infect (Larchmt). 2014;15(6):700–7. https://doi.org/10.1089/sur.2014.029.

    Article  PubMed  Google Scholar 

  23. Lauri C, Glaudemans A, Signore A. Leukocyte imaging of the diabetic foot. Curr Pharm Des. 2018;24(12):1270–6. https://doi.org/10.2174/1381612824666180227094116.

    Article  CAS  PubMed  Google Scholar 

  24. Jodal L, Afzelius P, Alstrup AKO, Jensen SB. Radiotracers for bone marrow infection imaging. Molecules. 2021;26(11). https://doi.org/10.3390/molecules26113159.

  25. Karpuz M, Ozgenc E, Atlihan-Gundogdu E, Burak Z. Pre-study on radiolabeling of colistin with lutetium-177 to develop theranostic infection agent. J Res Pharm. 2022;26(2):397–407. https://doi.org/10.29228/jrp.137.

    Article  CAS  Google Scholar 

  26. Aweda TA, Muftuler ZFB, Massicano AVF, Gadhia D, McCarthy KA, Queern S, et al. Radiolabeled cationic peptides for targeted imaging of infection. Contrast Media Mol Imaging. 2019:3149249. https://doi.org/10.1155/2019/3149249.

  27. Silindir-Gunay M, Ozer AY. 99mTc-radiolabeled levofloxacin and micelles as infection and inflammation imaging agents. J Drug Deliv Sci Technol. 2020;56:101571. https://doi.org/10.1016/j.jddst.2020.101571.

  28. Clausen AS, Østergaard DE, Holmberg P, Henriksen JR, Tham J, Damborg PP, et al. Quantitative determination of 64Cu-liposome accumulation at inflammatory and infectious sites: potential for future theranostic system. J Control Release. 2020;327:737–46. https://doi.org/10.1016/j.jconrel.2020.09.018.

    Article  CAS  PubMed  Google Scholar 

  29. Dams ET, Oyen WJ, Boerman OC, Storm G, Laverman P, Kok PJ, et al. 99mTc-PEG liposomes for the scintigraphic detection of infection and inflammation: clinical evaluation. J Nucl Med. 2000;41(4):622–30.

    CAS  PubMed  Google Scholar 

  30. Karpuz M, Silindir-Gunay M, Ozer AY. Clinical applications of nanosized drug-delivery systems in lung cancer imaging and therapy. Crit Rev Ther Drug Carrier Syst. 2020;37(5):435–71. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2020031657.

    Article  PubMed  Google Scholar 

  31. Kaul A, Chaturvedi S, Attri A, Kalra M, Mishra AK. Targeted theranostic liposomes: rifampicin and ofloxacin loaded pegylated liposomes for theranostic application in mycobacterial infections. RSC Adv. 2016;6(34):28919–26. https://doi.org/10.1039/C6RA01135G.

    Article  CAS  Google Scholar 

  32. Wallace SJ, Li J, Nation RL, Prankerd RJ, Boyd BJ. Interaction of colistin and colistin methanesulfonate with liposomes: colloidal aspects and implications for formulation. J Pharm Sci. 2012;101(9):3347–59. https://doi.org/10.1002/jps.23203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang S, Yu S, Lin Y, Zou P, Chai G, Yu HH, et al. Co-delivery of ciprofloxacin and colistin in liposomal formulations with enhanced in vitro antimicrobial activities against multidrug resistant Pseudomonas aeruginosa. Pharm Res. 2018;35(10):187. https://doi.org/10.1007/s11095-018-2464-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Bio. 1965;13(1):238-IN27. https://doi.org/10.1016/S0022-2836(65)80093-6.

  35. Kumar A, Dixit CK. Methods for characterization of nanoparticles. In: Nimesh S, Chandra R, Gupta N, editors. Advances in nanomedicine for the delivery of therapeutic nucleic acids: Woodhead Publishing; 2017. p. 43–58.

  36. Kaya OH, Karpuz M, Nur TS. Electrochemical analysis of liposome-encapsulated colistimethate sodium. Electroanalysis. 2022;34:1114–20. https://doi.org/10.1002/elan.202100570.

    Article  CAS  Google Scholar 

  37. Gharepapagh E, Fakhari A, Firuzyar T, Shomali A, Azimi F. Preparation, biodistribution and dosimetry study of Tc-99m labeled N-doped graphene quantum dot nanoparticles as a multimodular radiolabeling agent. New J Chem. 2021;45(8):3909–19. https://doi.org/10.1039/D0NJ04762G.

    Article  CAS  Google Scholar 

  38. Sayed S, Elsharkawy FM, Amin MM, Shamsel-Din HA, Ibrahim AB. Brain targeting efficiency of intranasal clozapine-loaded mixed micelles following radio labeling with technetium-99m. Drug Deliv. 2021;28(1):1524–38. https://doi.org/10.1080/10717544.2021.1951895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Silva L, Fu JY, Htar TT, Muniyandy S, Kasbollah A, Wan Kamal WHB, et al. Characterization, optimization, and in vitro evaluation of technetium-99m-labeled niosomes. Int J Nanomedicine. 2019;14:1101–17. https://doi.org/10.2147/IJN.S184912.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Santos CJ, Filho FM, Campos FL, Ferreira CdA, de Barros ALB, Soares DCF. Ag2WO4 nanoparticles radiolabeled with technetium-99m: a potential new tool for tumor identification and uptake. J Radioanal Nucl Chem. 2020;323(1):51–9. https://doi.org/10.1007/s10967-019-06955-2.

  41. Kumar P, Nagarajan A, Uchil PD. Analysis of cell viability by the alamarBlue assay. Cold Spring Harb Protoc. 2018;2018(6). https://doi.org/10.1101/pdb.prot095489.

  42. The European Committee on Antimicrobial Susceptibility Testing (EUCAST) Disk diffusion method for antimicrobial susceptibility testing version 11.0.

  43. Sun X, Yan X, Jacobson O, Sun W, Wang Z, Tong X, et al. Improved tumor uptake by optimizing liposome based RES blockade strategy. Theranostics. 2017;7(2):319–28. https://doi.org/10.7150/thno.18078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duman G, Aslan I, Ozer AY, Inanc I, Taralp A. Liposome, gel and lipogelosome formulations containing sodium hyaluronate. J Liposome Res. 2014;24(4):259–69. https://doi.org/10.3109/08982104.2014.907305.

    Article  CAS  PubMed  Google Scholar 

  45. Vieira DB, Carmona-Ribeiro AM. Cationic lipids and surfactants as antifungal agents: mode of action. J Antimicrob Chemother. 2006;58(4):760–7. https://doi.org/10.1093/jac/dkl312.

    Article  CAS  PubMed  Google Scholar 

  46. Sharma S, Rajendran V, Kulshreshtha R, Ghosh PC. Enhanced efficacy of anti-miR-191 delivery through stearylamine liposome formulation for the treatment of breast cancer cells. Int J Pharm. 2017;530(1–2):387–400. https://doi.org/10.1016/j.ijpharm.2017.07.079.

    Article  CAS  PubMed  Google Scholar 

  47. Liu L, Xiang Y, Wang Z, Yang X, Yu X, Lu Y, et al. Adhesive liposomes loaded onto an injectable, self-healing and antibacterial hydrogel for promoting bone reconstruction. NPG Asia Materials. 2019;11(1):81. https://doi.org/10.1038/s41427-019-0185-z.

    Article  CAS  Google Scholar 

  48. Ibaraki H, Kanazawa T, Chien W-Y, Nakaminami H, Aoki M, Ozawa K, et al. The effects of surface properties of liposomes on their activity against Pseudomonas aeruginosa PAO-1 biofilm. J Drug Deliv Sci Technol. 2020;57:101754. https://doi.org/10.1016/j.jddst.2020.101754.

  49. Robson AL, Dastoor PC, Flynn J, Palmer W, Martin A, Smith DW, et al. Advantages and limitations of current imaging techniques for characterizing liposome morphology. Front Pharmacol. 2018;9:80. https://doi.org/10.3389/fphar.2018.00080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lujan H, Griffin WC, Taube JH, Sayes CM. Synthesis and characterization of nanometer-sized liposomes for encapsulation and microRNA transfer to breast cancer cells. Int J Nanomedicine. 2019;14:5159–73. https://doi.org/10.2147/IJN.S203330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Karpuz M, Atlihan-Gundogdu E, Demir ES, Senyigit Z. Radiolabeled tedizolid phosphate liposomes for topical application: design, characterization, and evaluation of cellular binding capacity. AAPS PharmSciTech. 2021;22(2):62. https://doi.org/10.1208/s12249-020-01917-4.

    Article  CAS  PubMed  Google Scholar 

  52. Nguyen VD, Han J-W, Choi YJ, Cho S, Zheng S, Ko SY, et al. Active tumor-therapeutic liposomal bacteriobot combining a drug (paclitaxel)-encapsulated liposome with targeting bacteria (Salmonella typhimurium). Sens Actuators B: Chem. 2016;224:217–24. https://doi.org/10.1016/j.snb.2015.09.034.

    Article  CAS  Google Scholar 

  53. Nakamura Y, Mochida A, Choyke PL, Kobayashi H. Nanodrug delivery: is the enhanced permeability and retention effect sufficient for curing cancer? Bioconjug Chem. 2016;27(10):2225–38. https://doi.org/10.1021/acs.bioconjchem.6b00437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu Y, Sun D, Fan Q, Ma Q, Dong Z, Tao W, et al. The enhanced permeability and retention effect based nanomedicine at the site of injury. Nano Res. 2020;13(2):564–9. https://doi.org/10.1007/s12274-020-2655-6.

    Article  CAS  Google Scholar 

  55. Mirhadi E, Mashreghi M, Askarizadeh A, Mehrabian A, Alavizadeh SH, Arabi L, et al. Redox-sensitive doxorubicin liposome: a formulation approach for targeted tumor therapy. Sci Rep. 2022;12(1):11310. https://doi.org/10.1038/s41598-022-15239-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Karpuz M, Silindir-Gunay M, Kursunel MA, Esendagli G, Dogan A, Ozer AY. Design and in vitro evaluation of folate-targeted, co-drug encapsulated theranostic liposomes for non-small cell lung cancer. J Drug Deliv Sci Technol. 2020;57:101707. https://doi.org/10.1016/j.jddst.2020.101707.

  57. Tahara K, Kobayashi M, Yoshida S, Onodera R, Inoue N, Takeuchi H. Effects of cationic liposomes with stearylamine against virus infection. Int J Pharm. 2018;543(1):311–7. https://doi.org/10.1016/j.ijpharm.2018.04.001.

    Article  CAS  PubMed  Google Scholar 

  58. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2). https://doi.org/10.3390/pharmaceutics10020057.

  59. Parupudi A, Mulagapati SHR, Subramony JA. Nanoparticle technologies: recent state of the art and emerging opportunities. In: Kesharwani P, Singh KK, editors. Nanoparticle Therapeutics: Academic Press; 2022. p. 3–46.

  60. Smith MC, Crist RM, Clogston JD, McNeil SE. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Anal Bioanal Chem. 2017;409(24):5779–87. https://doi.org/10.1007/s00216-017-0527-z.

    Article  CAS  PubMed  Google Scholar 

  61. Lim LM, Ly N, Anderson D, Yang JC, Macander L, Jarkowski A 3rd, et al. Resurgence of colistin: a review of resistance, toxicity, pharmacodynamics, and dosing. Pharmacotherapy. 2010;30(12):1279–91. https://doi.org/10.1592/phco.30.12.1279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li Q, Li X, Zhao C. Strategies to obtain encapsulation and controlled release of small hydrophilic molecules. Front Bioeng Biotechnol. 2020;8:437. https://doi.org/10.3389/fbioe.2020.00437.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wallace SJ, Li J, Nation RL, Prankerd RJ, Boyd BJ. Interaction of colistin and colistin methanesulfonate with liposomes: colloidal aspects and implications for formulation. J Pharm Sci. 2012;101(9):3347–59. https://doi.org/10.1002/jps.23203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Celia C, Ferrati S, Bansal S, van de Ven AL, Ruozi B, Zabre E, et al. Sustained zero-order release of intact ultra-stable drug-loaded liposomes from an implantable nanochannel delivery system. Adv Healthc Mater. 2014;3(2):230–8. https://doi.org/10.1002/adhm.201300188.

    Article  CAS  PubMed  Google Scholar 

  65. Li X, Li Q, Zhao C. Zero-order controlled release of water-soluble drugs using a marker pen platform. ACS Omega. 2021;6(21):13774–8. https://doi.org/10.1021/acsomega.1c01141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Laracuente M-L, Yu MH, McHugh KJ. Zero-order drug delivery: state of the art and future prospects. J Control Release. 2020;327:834–56. https://doi.org/10.1016/j.jconrel.2020.09.020.

    Article  CAS  PubMed  Google Scholar 

  67. Kim MH, Kim SG, Kim DW. A novel dual-labeled small peptide as a multimodal imaging agent for targeting wild-type EGFR in tumors. PLoS One. 2022;17(2):e0263474. https://doi.org/10.1371/journal.pone.0263474.

  68. Mushtaq S, Bibi A, Park JE, Jeon J. Recent progress in technetium-99m-labeled nanoparticles for molecular imaging and cancer therapy. Nanomaterials. 2021;11(11):3022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pellico J, Gawne PJ, R TMdR. Radiolabelling of nanomaterials for medical imaging and therapy. Chem Soc Rev. 2021;50(5):3355–423. https://doi.org/10.1039/d0cs00384k.

  70. Santos-Oliveira R, Stabin MG. Dose calculation of radioactive nanoparticles: first considerations for the design of theranostic agents. Biomed Microdevices. 2018;20(4):93. https://doi.org/10.1007/s10544-018-0338-9.

    Article  CAS  PubMed  Google Scholar 

  71. Wu S, Helal-Neto E, Matos A, Jafari A, Kozempel J, Silva YJA, et al. Radioactive polymeric nanoparticles for biomedical application. Drug Deliv. 2020;27(1):1544–61. https://doi.org/10.1080/10717544.2020.1837296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gundogdu EA, Demir ES, Ekinci M, Ozgenc E, Ilem Ozdemir D, Senyigit Z, et al. The effect of radiolabeled nanostructured lipid carrier systems containing imatinib mesylate on NIH-3T3 and CRL-1739 cells. Drug Deliv. 2020;27(1):1695–703. https://doi.org/10.1080/10717544.2020.1841337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Siafaka PI, Okur NÜ, Karantas ID, Okur ME, Gündoğdu EA. Current update on nanoplatforms as therapeutic and diagnostic tools: a review for the materials used as nanotheranostics and imaging modalities. Asian J Pharm Sci. 2021;16(1):24–46. https://doi.org/10.1016/j.ajps.2020.03.003.

    Article  PubMed  Google Scholar 

  74. Garg M, Garg BR, Jain S, Mishra P, Sharma RK, Mishra AK, et al. Radiolabeling, pharmacoscintigraphic evaluation and antiretroviral efficacy of stavudine loaded 99mTc labeled galactosylated liposomes. Eur J Pharm Sci. 2008;33(3):271–81. https://doi.org/10.1016/j.ejps.2007.12.006.

    Article  CAS  PubMed  Google Scholar 

  75. Cvjetinovic D, Prijovic Z, Jankovic D, Radovic M, Mirkovic M, Milanovic Z, et al. Bioevaluation of glucose-modified liposomes as a potential drug delivery system for cancer treatment using 177-Lu radiotracking. J Control Release. 2021;332:301–11. https://doi.org/10.1016/j.jconrel.2021.03.006.

    Article  CAS  PubMed  Google Scholar 

  76. Nirwan N, Nikita, Sultana Y, Vohora D. Liposomes as multifaceted delivery system in the treatment of osteoporosis. Expert Opin Drug Deliv. 2021;18(6):761–75. https://doi.org/10.1080/17425247.2021.1867534.

  77. Liu J, Li X, Liu L, Bai Q, Sui N, Zhu Z. Self-assembled ultrasmall silver nanoclusters on liposome for topical antimicrobial delivery. Colloids Surf B Biointerfaces. 2021;200:111618. https://doi.org/10.1016/j.colsurfb.2021.111618.

  78. Isar S, Akbaba H, SahIn Y, Altinoz MA, Nalbantsoy A, Erel-Akbaba G, et al. Design and evaluation of erucic acid-phytosphingosine structured cationic nanoemulsions as a plasmid DNA delivery system against breast cancer cells. Pharm Dev Technol. 2022;27(2):145–54. https://doi.org/10.1080/10837450.2021.2025247.

    Article  CAS  PubMed  Google Scholar 

  79. Vhora I, Lalani R, Bhatt P, Patil S, Patel H, Patel V, et al. Colloidally stable small unilamellar stearyl amine lipoplexes for effective BMP-9 gene delivery to stem cells for osteogenic differentiation. AAPS PharmSciTech. 2018;19(8):3550–60. https://doi.org/10.1208/s12249-018-1161-6.

    Article  CAS  PubMed  Google Scholar 

  80. Zou Y, Zong G, Ling YH, Perez-Soler R. Development of cationic liposome formulations for intratracheal gene therapy of early lung cancer. Cancer Gene Ther. 2000;7(5):683–96. https://doi.org/10.1038/sj.cgt.7700156.

    Article  CAS  PubMed  Google Scholar 

  81. Plenagl N, Seitz BS, Reddy Pinnapireddy S, Jedelská J, Brüßler J, Bakowsky U. Hypericin loaded liposomes for anti-microbial photodynamic therapy of gram-positive bacteria. Phys Status Solidi A. 2018;215(15):1700837. https://doi.org/10.1002/pssa.201700837.

    Article  CAS  Google Scholar 

  82. Kuhn J, Smirnov A, Criss AK, Columbus L. Quantifying carcinoembryonic antigen-like cell adhesion molecule-targeted liposome delivery using imaging flow cytometry. Mol Pharm. 2019;16(6):2354–63. https://doi.org/10.1021/acs.molpharmaceut.8b01274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Langer O, Brunner M, Zeitlinger M, Ziegler S, Muller U, Dobrozemsky G, et al. In vitro and in vivo evaluation of [18F]ciprofloxacin for the imaging of bacterial infections with PET. Eur J Nucl Med Mol Imaging. 2005;32(2):143–50. https://doi.org/10.1007/s00259-004-1646-2.

    Article  CAS  PubMed  Google Scholar 

  84. Matuschek E, Åhman J, Webster C, Kahlmeter G. Antimicrobial susceptibility testing of colistin – evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin Microbiol Infect. 2018;24(8):865–70. https://doi.org/10.1016/j.cmi.2017.11.020.

    Article  CAS  PubMed  Google Scholar 

  85. Bergen PJ, Bulitta JB, Forrest A, Tsuji BT, Li J, Nation RL. Pharmacokinetic/pharmacodynamic investigation of colistin against Pseudomonas aeruginosa using an in vitro model. Antimicrob Agents Chemother. 2010;54(9):3783–9. https://doi.org/10.1128/AAC.00903-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bergen PJ, Li J, Rayner CR, Nation RL. Colistin methanesulfonate is an inactive prodrug of colistin against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2006;50(6):1953–8. https://doi.org/10.1128/AAC.00035-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wallace SJ, Li J, Rayner CR, Coulthard K, Nation RL. Stability of colistin methanesulfonate in pharmaceutical products and solutions for administration to patients. Antimicrob Agents Chemother. 2008;52(9):3047–51. https://doi.org/10.1128/AAC.00103-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wallace SJ, Li J, Nation RL, Prankerd RJ, Velkov T, Boyd BJ. Self-assembly behavior of colistin and its prodrug colistin methanesulfonate: implications for solution stability and solubilization. J Phys Chem B. 2010;114(14):4836–40. https://doi.org/10.1021/jp100458x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Li J, Turnidge J, Milne R, Nation RL, Coulthard K. In vitro pharmacodynamic properties of colistin and colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob Agents Chemother. 2001;45(3):781–5. https://doi.org/10.1128/AAC.45.3.781-785.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li J, Coulthard K, Milne R, Nation RL, Conway S, Peckham D, et al. Steady-state pharmacokinetics of intravenous colistin methanesulphonate in patients with cystic fibrosis. J Antimicrob Chemother. 2003;52(6):987–92. https://doi.org/10.1093/jac/dkg468.

    Article  CAS  PubMed  Google Scholar 

  91. Li J, Rayner CR, Nation RL, Deans R, Boots R, Widdecombe N, et al. Pharmacokinetics of colistin methanesulfonate and colistin in a critically ill patient receiving continuous venovenous hemodiafiltration. Antimicrob Agents Chemother. 2005;49(11):4814–5. https://doi.org/10.1128/AAC.49.11.4814-4815.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hajiahmadi F, Alikhani MY, Shariatifar H, Arabestani MR, Ahmadvand D. The bactericidal effect of lysostaphin coupled with liposomal vancomycin as a dual combating system applied directly on methicillin-resistant Staphylococcus aureus infected skin wounds in mice. Int J Nanomedicine. 2019;14:5943–55. https://doi.org/10.2147/IJN.S214521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Owen RJ, Li J, Nation RL, Spelman D. In vitro pharmacodynamics of colistin against Acinetobacter baumannii clinical isolates. J Antimicrob Chemother. 2007;59(3):473–7. https://doi.org/10.1093/jac/dkl512.

    Article  CAS  PubMed  Google Scholar 

  94. Tan CH, Li J, Nation RL. Activity of colistin against heteroresistant Acinetobacter baumannii and emergence of resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother. 2007;51(9):3413–5. https://doi.org/10.1128/AAC.01571-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li Y, Tang C, Zhang E, Yang L. Electrostatically entrapped colistin liposomes for the treatment of Pseudomonas aeruginosa infection. Pharm Dev Technol. 2017;22(3):436–44. https://doi.org/10.1080/10837450.2016.1228666.

    Article  CAS  PubMed  Google Scholar 

  96. Omri A, Suntres ZE, Shek PN. Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection. Biochem Pharmacol. 2002;64(9):1407–13. https://doi.org/10.1016/s0006-2952(02)01346-1.

    Article  CAS  PubMed  Google Scholar 

  97. Doern CD. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J Clin Microbiol. 2014;52(12):4124–8. https://doi.org/10.1128/JCM.01121-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wei WJ, Yang HF. Synergy against extensively drug-resistant Acinetobacter baumannii in vitro by two old antibiotics: colistin and chloramphenicol. Int J Antimicrob Agents. 2017;49(3):321–6. https://doi.org/10.1016/j.ijantimicag.2016.11.031.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Polifarma İlaç San. ve Tic. A.Ş. for the generous gift of CMS.

Funding

The research leading to these results has received funding from the Izmir Katip Celebi University Scientific Research Projects Coordination Unit under the Grant agreement number 2019-GAP-ECZF-0005.

Author information

Authors and Affiliations

Authors

Contributions

Merve Karpuz: conceptualization, funding acquisition, investigation, methodology, project administration, resources, validation, visualization, and writing — original draft. Aybala Temel: investigation, methodology, resources, validation, visualization, and writing — original draft. Emre Ozgenc: investigation, methodology, resources, and writing — review and editing. Yamac Tekintas: investigation, methodology, resources, and writing — review and editing. Gulsah Erel-Akbaba: investigation, methodology, resources, and writing — review and editing. Zeynep Senyigit: methodology, resources, and writing — review and editing. Evren Atlihan-Gundogdu: methodology, resources, and writing — review and editing.

Corresponding author

Correspondence to Merve Karpuz.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpuz, M., Temel, A., Ozgenc, E. et al. 99mTc-Labeled, Colistin Encapsulated, Theranostic Liposomes for Pseudomonas aeruginosa Infection. AAPS PharmSciTech 24, 77 (2023). https://doi.org/10.1208/s12249-023-02533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02533-8

Keywords

Navigation