Skip to main content

Molecular Mechanisms Involved in Pseudomonas aeruginosa Bacteremia

  • Chapter
  • First Online:
Pseudomonas aeruginosa

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1386))

Abstract

Bloodstream infections (BSI) with Pseudomonas aeruginosa account for 8.5% of all BSIs, their mortality rate, at about 40%, is the highest among causative agents. For this reason and due to its intrinsic and acquired resistance to antibiotics, P. aeruginosa represents a threat to public health systems. From the primary site of infection, often the urinary and respiratory tracts, P. aeruginosa uses its arsenal of virulence factors to cross both epithelial and endothelial barriers, ultimately reaching the bloodstream. In this chapter, we review the main steps involved in invasion and migration of P. aeruginosa into blood vessels, and the molecular mechanisms governing bacterial survival in blood. We also review the lifestyle of P. aeruginosa “on” and “in” host cells. In the context of genomic and phenotypic diversity of laboratory strains and clinical isolates, we underline the need for more standardized and robust methods applied to host-pathogen interaction studies, using several representative strains from distinct phylogenetic groups before drawing general conclusions. Finally, our literature survey reveals a need for further studies to complete our comprehension of the complex interplay between P. aeruginosa and the immune system in the blood, specifically in relation to the complement system cascade(s) and the Membrane Attack Complex (MAC), which play crucial roles in counteracting P. aeruginosa BSI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Aziz AM, Elgaml A, Ali YM (2019) Bacteriophage therapy increases complement-mediated lysis of bacteria and enhances bacterial clearance after acute lung infection with multidrug-resistant Pseudomonas aeruginosa. J Infect Dis 219:1439–1447

    Article  CAS  PubMed  Google Scholar 

  • Akiyama M, Oishi K, Tao M, Matsumoto K, Pollack M (2000) Antibacterial properties of Pseudomonas aeruginosa immunotype 1 lipopolysaccharide-specific monoclonal antibody (MAb) in a murine thigh infection model: combined effects of MAb and ceftazidime. Microbiol Immunol 44:629–635

    Article  CAS  PubMed  Google Scholar 

  • Angus AA, Evans DJ, Barbieri JT, Fleiszig SMJ (2010) The ADP-ribosylation domain of Pseudomonas aeruginosa ExoS is required for membrane bleb niche formation and bacterial survival within epithelial cells. Infect Immun 78:4500–4510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora SK, Ritchings BW, Almira EC, Lory S, Ramphal R (1998) The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect Immun 66:1000–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayrapetyan M, Williams TC, Baxter R, Oliver JD (2015) Viable but nonculturable and persister cells coexist stochastically and are induced by human serum. Infect Immun 83:4194–4203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azghani AO (1996) Pseudomonas aeruginosa and epithelial permeability: role of virulence factors elastase and exotoxin A. Am J Respir Cell Mol Biol 15:132–140

    Article  CAS  PubMed  Google Scholar 

  • Azimi S, Thomas J, Cleland SE, Curtis JE, Goldberg JB, Diggle SP (2021) O-specific antigen-dependent surface hydrophobicity mediates aggregate assembly type in Pseudomonas aeruginosa. MBio 12

    Google Scholar 

  • Bachta KER, Allen JP, Cheung BH, Chiu C-H, Hauser AR (2020) Systemic infection facilitates transmission of Pseudomonas aeruginosa in mice. Nat Commun 11:543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartell JA, Cameron DR, Mojsoska B, Haagensen JAJ, Pressler T, Sommer LM, Lewis K, Molin S, Johansen HK (2020) Bacterial persisters in long-term infection: emergence and fitness in a complex host environment. PLoS Pathog 16:e1009112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basso P, Wallet P, Elsen S, Soleilhac E, Henry T, Faudry E, Attree I (2017) Multiple Pseudomonas species secrete exolysin-like toxins and provoke Caspase-1-dependent macrophage death. Environ Microbiol 19:4045–4064

    Article  CAS  PubMed  Google Scholar 

  • Beaufort N, Corvazier E, Mlanaoindrou S, de Bentzmann S, Pidard D (2013) Disruption of the endothelial barrier by proteases from the bacterial pathogen Pseudomonas aeruginosa: implication of matrilysis and receptor cleavage. PLoS One 8:e75708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bejarano PA, Langeveld JP, Hudson BG, Noelken ME (1989) Degradation of basement membranes by Pseudomonas aeruginosa elastase. Infect Immun 57:3783–3787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belyy A, Mechold U, Renault L, Ladant D (2018) ExoY, an actin-activated nucleotidyl cyclase toxin from P. aeruginosa: a minireview. Toxicon 149:65–71

    Article  CAS  PubMed  Google Scholar 

  • Belyy A, Merino F, Mechold U, Raunser S (2021) Mechanism of actin-dependent activation of nucleotidyl cyclase toxins from bacterial human pathogens. Nat Commun 12:6628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berthelot P, Attree I, Plésiat P, Chabert J, de Bentzmann S, Pozzetto B, Grattard F (2003) Genotypic and phenotypic analysis of type III secretion system in a cohort of Pseudomonas aeruginosa bacteremia isolates: evidence for a possible association between O serotypes and exo genes. J Infect Dis 188:512–518

    Article  CAS  PubMed  Google Scholar 

  • Bignold LP, Rogers SD, Siaw TM, Bahnisch J (1991) Inhibition of chemotaxis of neutrophil leukocytes to interleukin-8 by endotoxins of various bacteria. Infect Immun 59:4255–4258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouillot S, Munro P, Gallet B, Reboud E, Cretin F, Golovkine G, Schoehn G, Attrée I, Lemichez E, Huber P (2017) Pseudomonas aeruginosa Exolysin promotes bacterial growth in lungs, alveolar damage and bacterial dissemination. Sci Rep 7:2120

    Article  PubMed  PubMed Central  Google Scholar 

  • Brauner A, Fridman O, Gefen O, Balaban NQ (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330

    Article  CAS  PubMed  Google Scholar 

  • Breviario F, Caveda L, Corada M, Martin-Padura I, Navarro P, Golay J, Introna M, Gulino D, Lampugnani MG, Dejana E (1995) Functional properties of human vascular endothelial cadherin (7B4/Cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol 15:1229–1239

    Article  CAS  PubMed  Google Scholar 

  • Bucior I, Mostov K, Engel JN (2010) Pseudomonas aeruginosa-mediated damage requires distinct receptors at the apical and basolateral surfaces of the polarized epithelium. Infect Immun 78:939–953

    Article  CAS  PubMed  Google Scholar 

  • Bucior I, Pielage JF, Engel JN (2012) Pseudomonas aeruginosa Pili and Flagella mediate distinct binding and signaling events at the apical and basolateral surface of airway epithelium. PLoS Pathog 8:e1002616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, Surma MA, Simons K (2012) Polarized sorting and trafficking in epithelial cells. Cell Res 22:793–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerquetti MC, Sordelli DO, Bellanti JA, Hooke AM (1986) Lung defenses against Pseudomonas aeruginosa in C5-deficient mice with different genetic backgrounds. Infect Immun 52:853–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravortty D, Nanda Kumar KS (2000) Bacterial lipopolysaccharide induces cytoskeletal rearrangement in small intestinal lamina propria fibroblasts: actin assembly is essential for lipopolysaccharide signaling. Biochim Biophys Acta 1500:125–136

    Article  CAS  PubMed  Google Scholar 

  • Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP (2004) Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci U S A 101:3587–3590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleveland RP, Hazlett LD, Leon MA, Berk RS (1983) Role of complement in murine corneal infection caused by Pseudomonas aeruginosa. Invest Ophthalmol Vis Sci 24:237–242

    CAS  PubMed  Google Scholar 

  • Collins MS, Ladehoff DK, Mehton NS, Noonan JS (1990) Opsonic and protective activity of five human IgM monoclonal antibodies reactive with lipopolysaccharide antigen of Pseudomonas aeruginosa. FEMS Microbiol Lett 64:263–268

    Article  Google Scholar 

  • Corada M, Liao F, Lindgren M, Lampugnani MG, Breviario F, Frank R, Muller WA, Hicklin DJ, Bohlen P, Dejana E (2001) Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood 97:1679–1684

    Article  CAS  PubMed  Google Scholar 

  • Cott C, Thuenauer R, Landi A, Kühn K, Juillot S, Imberty A, Madl J, Eierhoff T, Römer W (2016) Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation. Biochim. Biophys Acta BBA Mol Cell Res 1863:1106–1118

    Article  CAS  Google Scholar 

  • Cowell BA, Evans DJ, Fleiszig SMJ (2005) Actin cytoskeleton disruption by ExoY and its effects on Pseudomonas aeruginosa invasion. FEMS Microbiol Lett 250:71–76

    Article  CAS  PubMed  Google Scholar 

  • Cruz JW, Damko E, Modi B, Tu N, Meagher K, Voronina V, Gartner H, Ehrlich G, Rafique A, Babb R et al (2019) A novel bispecific antibody platform to direct complement activity for efficient lysis of target cells. Sci Rep 9:12031

    Article  PubMed  PubMed Central  Google Scholar 

  • Dacheux D, Attree I, Schneider C, Toussaint B (1999) Cell death of human polymorphonuclear neutrophils induced by a Pseudomonas aeruginosa cystic fibrosis isolate requires a functional type III secretion system. Infect Immun 67:6164–6167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Q, Sun J, Barbieri JT (2005) Uncoupling Crk signal transduction by Pseudomonas exoenzyme T. J Biol Chem 280:35953–35960

    Article  CAS  PubMed  Google Scholar 

  • Diaz MH, Hauser AR (2010) Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infect Immun 78:1447–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz MH, Shaver CM, King JD, Musunuri S, Kazzaz JA, Hauser AR (2008) Pseudomonas aeruginosa induces localized immunosuppression during pneumonia. Infect Immun 76:4414–4421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Divithotawela C, Pham A, Ledger EL, Hopkins P, Wells TJ, Chambers D (2020) Treatment of life-threatening Pseudomonas aeruginosa infection by pheresis of inhibitory antibodies. J Heart Lung Transplant 39:87–89

    Article  PubMed  Google Scholar 

  • Eckhardt A, Heiss MM, Ehret W, Permanetter W, Duchêne M, Domdey H, Von Specht B-U (1991) Evaluation of protective mAbs against Pseudomonas aeruginosa outer membrane protein I by C1q binding assay. Zentralblatt Für Bakteriol 275:100–111

    Article  CAS  Google Scholar 

  • Elsen S, Huber P, Bouillot S, Couté Y, Fournier P, Dubois Y, Timsit J-F, Maurin M, Attrée I (2014) A type III secretion negative clinical strain of Pseudomonas aeruginosa employs a two-partner secreted exolysin to induce hemorrhagic pneumonia. Cell Host Microbe 15:164–176

    Article  CAS  PubMed  Google Scholar 

  • Eutamene H, Theodorou V, Schmidlin F, Tondereau V, Garcia-Villar R, Salvador-Cartier C, Chovet M, Bertrand C, Bueno L (2005) LPS-induced lung inflammation is linked to increased epithelial permeability: role of MLCK. Eur Respir J 25:789–796

    Article  CAS  PubMed  Google Scholar 

  • Evans LR, Linker A (1973) Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. J Bacteriol 116:915–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feltman H, Schulert G, Khan S, Jain M, Peterson L, Hauser AR (2001) Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiol Read Engl 147:2659–2669

    Article  CAS  Google Scholar 

  • Filloux A (2011) Protein secretion systems in Pseudomonas aeruginosa: an essay on diversity, evolution, and function. Front Microbiol 2

    Google Scholar 

  • Finck-Barbançon V, Goranson J, Zhu L, Sawa T, Wiener-Kronish JP, Fleiszig SMJ, Wu C, Mende-Mueller L, Frank DW (1997) ExoU expression by Pseudomonas aeruginosa correlates with acute cytotoxicity and epithelial injury. Mol Microbiol 25:547–557

    Article  PubMed  Google Scholar 

  • Fleiszig SM, Evans DJ, Do N, Vallas V, Shin S, Mostov KE (1997) Epithelial cell polarity affects susceptibility to Pseudomonas aeruginosa invasion and cytotoxicity. Infect Immun 65:2861–2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freschi L, Bertelli C, Jeukens J, Moore MP, Kukavica-Ibrulj I, Emond-Rheault J-G, Hamel J, Fothergill JL, Tucker NP, McClean S et al (2018) Genomic characterisation of an international Pseudomonas aeruginosa reference panel indicates that the two major groups draw upon distinct mobile gene pools. FEMS Microbiol Lett 365

    Google Scholar 

  • Freschi L, Vincent AT, Jeukens J, Emond-Rheault J-G, Kukavica-Ibrulj I, Dupont M-J, Charette SJ, Boyle B, Levesque RC (2019) The Pseudomonas aeruginosa pan-genome provides new insights on its population structure, horizontal gene transfer, and pathogenicity. Genome Biol Evol 11:109–120

    Article  CAS  PubMed  Google Scholar 

  • Fu H, Coburn J, Collier RJ (1993) The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. Proc Natl Acad Sci USA 90:2320–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganter MT, Roux J, Su G, Lynch SV, Deutschman CS, Weiss YG, Christiaans SC, Myazawa B, Kipnis E, Wiener-Kronish JP et al (2009) Role of small GTPases and αvβ5 integrin in Pseudomonas aeruginosa-induced increase in lung endothelial permeability. Am J Respir Cell Mol Biol 40:108–118

    Article  CAS  PubMed  Google Scholar 

  • Garrity-Ryan L, Kazmierczak B, Kowal R, Comolli J, Hauser A, Engel JN (2000) The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages. Infect Immun 68:7100–7113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gassama-Diagne A, Yu W, ter Beest M, Martin-Belmonte F, Kierbel A, Engel J, Mostov K (2006) Phosphatidylinositol-3,4,5-trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 8:963–970

    Article  CAS  PubMed  Google Scholar 

  • Geiser TK, Kazmierczak BI, Garrity-Ryan LK, Matthay MA, Engel JN (2001) Pseudomonas aeruginosa ExoT inhibits in vitro lung epithelial wound repair. Cell Microbiol 3:223–236

    Article  CAS  PubMed  Google Scholar 

  • Ghafoor A, Hay ID, Rehm BHA (2011) Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol 77:5238–5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson MC, Perrimon N (2003) Apicobasal polarization: epithelial form and function. Curr Opin Cell Biol 15:747–752

    Article  CAS  PubMed  Google Scholar 

  • Glentis A, Gurchenkov V, Vignjevic DM (2014) Assembly, heterogeneity, and breaching of the basement membranes. Cell Adh Migr 8:236–245

    Article  PubMed  PubMed Central  Google Scholar 

  • Goehring U-M, Schmidt G, Pederson KJ, Aktories K, Barbieri JT (1999) The N-terminal domain of Pseudomonas aeruginosa exoenzyme S Is a GTPase-activating protein for Rho GTPases. J Biol Chem 274:36369–36372

    Article  CAS  PubMed  Google Scholar 

  • Golovkine G, Faudry E, Bouillot S, Voulhoux R, Attrée I, Huber P (2014) VE-cadherin cleavage by LasB protease from Pseudomonas aeruginosa facilitates type III secretion system toxicity in endothelial cells. PLoS Pathog 10:e1003939

    Article  PubMed  PubMed Central  Google Scholar 

  • Golovkine G, Lemelle L, Burny C, Vaillant C, Palierne J-F, Place C, Huber P (2016a) Host cell surfaces induce a Type IV pili-dependent alteration of bacterial swimming. Sci Rep 6:38950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golovkine G, Faudry E, Bouillot S, Elsen S, Attrée I, Huber P (2016b) Pseudomonas aeruginosa transmigrates at epithelial cell-cell junctions, exploiting sites of cell division and senescent cell extrusion. PLoS Pathog 12:e1005377

    Article  PubMed  PubMed Central  Google Scholar 

  • Golovkine G, Reboud E, Huber P (2018) Pseudomonas aeruginosa takes a multi-target approach to achieve junction breach. Front Cell Infect Microbiol 7:532

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross GN, Rehm SR, Pierce AK (1978) The effect of complement depletion on lung clearance of bacteria. J Clin Invest 62:373–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupte A, Jyot J, Ravi M, Ramphal R (2021) High pyocyanin production and non-motility of Pseudomonas aeruginosa isolates are correlated with septic shock or death in bacteremic patients. PLoS One 16:e0253259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman JA, Finlay BB (2009) Tight junctions as targets of infectious agents. Biochim Biophys Acta BBA Biomembr 1788:832–841

    Article  CAS  Google Scholar 

  • Hallström T, Mörgelin M, Barthel D, Raguse M, Kunert A, Hoffmann R, Skerka C, Zipfel PF (2012) Dihydrolipoamide dehydrogenase of Pseudomonas aeruginosa is a surface-exposed immune evasion protein that binds three members of the factor H family and plasminogen. J Immunol 189:4939–4950

    Article  PubMed  Google Scholar 

  • Hallström T, Uhde M, Singh B, Skerka C, Riesbeck K, Zipfel PF (2015) Pseudomonas aeruginosa uses dihydrolipoamide dehydrogenase (Lpd) to bind to the human terminal pathway regulators vitronectin and clusterin to inhibit terminal pathway complement attack. PLoS One 10:e0137630

    Article  PubMed  PubMed Central  Google Scholar 

  • Hauser AR (2009) The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 7:654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi N, Nishizawa H, Kitao S, Deguchi S, Nakamura T, Fujimoto A, Shikata M, Gotoh N (2015) Pseudomonas aeruginosa injects type III effector ExoS into epithelial cells through the function of type IV pili. FEBS Lett 589:890–896

    Article  CAS  PubMed  Google Scholar 

  • Heck LW, Morihara K, Abrahamson DR (1986a) Degradation of soluble laminin and depletion of tissue-associated basement membrane laminin by Pseudomonas aeruginosa elastase and alkaline protease. Infect Immun 54:149–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heck LW, Morihara K, McRae WB, Miller EJ (1986b) Specific cleavage of human type III and IV collagens by Pseudomonas aeruginosa elastase. Infect Immun 51:115–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heggers JP, Haydon S, Ko F, Hayward PG, Carp S, Robson MC (1992) Pseudomonas aeruginosa exotoxin A: its role in retardation of wound healing: the 1992 Lindberg Award. J Burn Care Rehabil 13:512–518

    Article  CAS  PubMed  Google Scholar 

  • Heimer SR, Evans DJ, Stern ME, Barbieri JT, Yahr T, Fleiszig SMJ (2013) Pseudomonas aeruginosa utilizes the type III secreted toxin ExoS to avoid acidified compartments within epithelial cells. PLoS One 8:e73111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heiniger RW, Winther-Larsen HC, Pickles RJ, Koomey M, Wolfgang MC (2010) Infection of human mucosal tissue by Pseudomonas aeruginosa requires sequential and mutually dependent virulence factors and a novel pilus-associated adhesin. Cell Microbiol 12:1158–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW (2014) Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science 343:204–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Held K, Ramage E, Jacobs M, Gallagher L, Manoil C (2012) Sequence-verified two-allele transposon mutant library for Pseudomonas aeruginosa PAO1. J Bacteriol 194:6387–6389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemachandra S, Kamboj K, Copfer J, Pier G, Green LL, Schreiber JR (2001) Human monoclonal antibodies against Pseudomonas aeruginosa lipopolysaccharide derived from transgenic mice containing megabase human immunoglobulin loci are opsonic and protective against fatal Pseudomonas sepsis. Infect Immun 69:2223–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilker R, Munder A, Klockgether J, Losada PM, Chouvarine P, Cramer N, Davenport CF, Dethlefsen S, Fischer S, Peng H et al (2015) Interclonal gradient of virulence in the Pseudomonas aeruginosa pangenome from disease and environment. Environ Microbiol 17:29–46

    Article  CAS  PubMed  Google Scholar 

  • Hill HR, Augustine NH, Shigeoka AO (1984) Comparative opsonic activity of intravenous gamma globulin preparations for common bacterial pathogens. Am J Med 76:61–66

    Article  CAS  PubMed  Google Scholar 

  • Hoge R, Pelzer A, Rosenau F, Wilhelm S (2010) Weapons of a pathogen: proteases and their role in virulence of Pseudomonas aeruginosa. In: Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2, pp 383–395

    Google Scholar 

  • Hong Y, Ghebrehiwet B (1992) Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin Immunol Immunopathol 62:133–138

    Article  CAS  PubMed  Google Scholar 

  • Höpken UE, Lu B, Gerard NP, Gerard C (1996) The C5a chemoattractant receptor mediates mucosal defence to infection. Nature 383:86–89

    Article  PubMed  Google Scholar 

  • Horn MP, Zuercher AW, Imboden MA, Rudolf MP, Lazar H, Wu H, Hoiby N, Fas SC, Lang AB (2010) Preclinical in vitro and in vivo characterization of the fully human monoclonal IgM antibody KBPA101 specific for Pseudomonas aeruginosa serotype IATS-O11. Antimicrob Agents Chemother 54:2338–2344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber P, Bouillot S, Elsen S, Attrée I (2014) Sequential inactivation of Rho GTPases and Lim kinase by Pseudomonas aeruginosa toxins ExoS and ExoT leads to endothelial monolayer breakdown. Cell Mol Life Sci 71:1927–1941

    Article  CAS  PubMed  Google Scholar 

  • Inclan YF, Persat A, Greninger A, Von Dollen J, Johnson J, Krogan N, Gitai Z, Engel JN (2016) A scaffold protein connects type IV pili with the Chp chemosensory system to mediate activation of virulence signaling in Pseudomonas aeruginosa. Mol Microbiol 101:590–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs MA, Alwood A, Thaipisuttikul I, Spencer D, Haugen E, Ernst S, Will O, Kaul R, Raymond C, Levy R et al (2003) Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 100:14339–14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Waterfield NR, Yang J, Yang G, Jin Q (2014) A Pseudomonas aeruginosa type VI secretion phospholipase D effector targets both prokaryotic and eukaryotic cells. Cell Host Microbe 15:600–610

    Article  CAS  PubMed  Google Scholar 

  • Jones CJ, Wozniak DJ (2017) Psl produced by mucoid Pseudomonas aeruginosa contributes to the establishment of biofilms and immune evasion. MBio 8:e00864-17. https://doi.org/10.1128/mBio.00864-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Josenhans C, Suerbaum S (2002) The role of motility as a virulence factor in bacteria. Int J Med Microbiol 291:605–614

    Article  CAS  PubMed  Google Scholar 

  • Kang C, Kim S, Kim H, Park S, Choe Y, Oh M, Kim E, Choe K (2003) Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis 37:745–751

    Article  PubMed  Google Scholar 

  • Kazmierczak BI, Engel JN (2002) Pseudomonas aeruginosa ExoT acts in vivo as a GTPase-activating protein for RhoA, Rac1, and Cdc42. Infect Immun 70:2198–2205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazmierczak BI, Schniederberend M, Jain R (2015) Cross-regulation of Pseudomonas motility systems: the intimate relationship between flagella, pili and virulence. Curr Opin Microbiol 28:78–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kenawy HI, Ali YM, Rajakumar K, Lynch NJ, Kadioglu A, Stover CM, Schwaeble WJ (2012) Absence of the lectin activation pathway of complement does not increase susceptibility to Pseudomonas aeruginosa infections. Immunobiology 217:272–280

    Article  CAS  PubMed  Google Scholar 

  • Kern WV, Rieg S (2020) Burden of bacterial bloodstream infection-a brief update on epidemiology and significance of multidrug-resistant pathogens. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 26:151–157

    CAS  Google Scholar 

  • Kharazmi A, Eriksen HO, Döring G, Goldstein W, HøIby N (1986) Effect of Pseudomonas aeruginosa proteases on human leukocyte phagocytosis and bactericidal activity. Acta Pathol Microbiol Scand Ser C Immunol 94C:175–179

    CAS  Google Scholar 

  • Kierbel A, Gassama-Diagne A, Mostov K, Engel JN (2005) The phosphoinositol-3-kinase-protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Mol Biol Cell 16:2577–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kierbel A, Gassama-Diagne A, Rocha C, Radoshevich L, Olson J, Mostov K, Engel J (2007) Pseudomonas aeruginosa exploits a PIP3-dependent pathway to transform apical into basolateral membrane. J Cell Biol 177:21–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kintz E, Scarff JM, DiGiandomenico A, Goldberg JB (2008) Lipopolysaccharide O-antigen chain length regulation in Pseudomonas aeruginosa serogroup O11 strain PA103. J Bacteriol 190:2709–2716

    Article  CAS  PubMed  Google Scholar 

  • Klockgether J, Munder A, Neugebauer J, Davenport CF, Stanke F, Larbig KD, Heeb S, Schöck U, Pohl TM, Wiehlmann L et al (2010) Genome diversity of Pseudomonas aeruginosa PAO1 laboratory strains. J Bacteriol 192:1113–1121

    Article  CAS  PubMed  Google Scholar 

  • Kobielak A, Fuchs E (2004) α-catenin: at the junction of intercellular adhesion and actin dynamics. Nat Rev Mol Cell Biol 5:614–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh AY, Priebe GP, Ray C, Van Rooijen N, Pier GB (2009) Inescapable need for neutrophils as mediators of cellular innate immunity to acute Pseudomonas aeruginosa pneumonia. Infect Immun 77:5300–5310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler T, Curty LK, Barja F, van Delden C, Pechère J-C (2000) Swarming of Pseudomonas aeruginosa Is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol 182:5990–5996

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowalczyk AP, Green KJ (2013) Chapter five—Structure, function, and regulation of desmosomes. In: van Roy F (ed) Progress in molecular biology and translational science. Academic, pp 95–118

    Google Scholar 

  • Krall R, Schmidt G, Aktories K, Barbieri JT (2000) Pseudomonas aeruginosa ExoT is a Rho GTPase-activating protein. Infect Immun 68:6066–6068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kugadas A, Christiansen SH, Sankaranarayanan S, Surana NK, Gauguet S, Kunz R, Fichorova R, Vorup-Jensen T, Gadjeva M (2016) Impact of microbiota on resistance to ocular Pseudomonas aeruginosa-induced keratitis. PLoS Pathog 12:e1005855

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunert A, Losse J, Gruszin C, Hühn M, Kaendler K, Mikkat S, Volke D, Hoffmann R, Jokiranta TS, Seeberger H et al (2007) Immune evasion of the human pathogen Pseudomonas aeruginosa: elongation factor Tuf is a factor H and plasminogen binding protein. J Immunol 179:2979–2988

    Article  CAS  PubMed  Google Scholar 

  • Laarman AJ, Bardoel BW, Ruyken M, Fernie J, Milder FJ, van Strijp JAG, Rooijakkers SHM (2012) Pseudomonas aeruginosa alkaline protease blocks complement activation via the classical and lectin pathways. J Immunol 188:386–393

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Kimmel R, Petersen S, Thomas S, Pier G, Bezabeh B, Luo R, Schreiber JR (2005) Multi-valent human monoclonal antibody preparation against Pseudomonas aeruginosa derived from transgenic mice containing human immunoglobulin loci is protective against fatal pseudomonas sepsis caused by multiple serotypes. Vaccine 23:3264–3271

    Article  CAS  PubMed  Google Scholar 

  • Lam JS, Taylor VL, Islam ST, Hao Y, Kocíncová D (2011) Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front Microbiol 2:118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larsen GL, Mitchell BC, Harper TB, Henson PM (1982) The pulmonary response of C5 sufficient and deficient mice to Pseudomonas aeruginosa. Am Rev Respir Dis 126:306–311

    CAS  PubMed  Google Scholar 

  • Laventie B-J, Sangermani M, Estermann F, Manfredi P, Planes R, Hug I, Jaeger T, Meunier E, Broz P, Jenal U (2019) A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host Microbe 25:140–152.e6

    Article  CAS  PubMed  Google Scholar 

  • Leduc D, Beaufort N, de Bentzmann S, Rousselle J-C, Namane A, Chignard M, Pidard D (2007) The Pseudomonas aeruginosa LasB metalloproteinase regulates the human urokinase-type plasminogen activator receptor through domain-specific endoproteolysis. Infect Immun 75:3848–3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee A, Chow D, Haus B, Tseng W, Evans D, Fleiszig S, Chandy G, Machen T (1999) Airway epithelial tight junctions and binding and cytotoxicity of Pseudomonas aeruginosa. Am J Physiol Lung Cell Mol Physiol 277:L204–L217

    Article  CAS  Google Scholar 

  • Lepanto P, Bryant DM, Rossello J, Datta A, Mostov KE, Kierbel A (2011) Pseudomonas aeruginosa interacts with epithelial cells rapidly forming aggregates that are internalized by a Lyn-dependent mechanism. Cell Microbiol 13:1212–1222

    Article  CAS  PubMed  Google Scholar 

  • Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, Balaban NQ (2017) Antibiotic tolerance facilitates the evolution of resistance. Science 355:826–830

    Article  CAS  PubMed  Google Scholar 

  • Li J, Ramezanpour M, Fong SA, Cooksley C, Murphy J, Suzuki M, Psaltis AJ, Wormald PJ, Vreugde S (2019) Pseudomonas aeruginosa exoprotein-induced barrier disruption correlates with elastase activity and marks chronic rhinosinusitis severity. Front Cell Infect Microbiol 9:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillehoj EP, Kim BT, Kim KC (2002) Identification of Pseudomonas aeruginosa flagellin as an adhesin for Muc1 mucin. Am J Physiol Lung Cell Mol Physiol 282:L751–L756

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Gefen O, Ronin I, Bar-Meir M, Balaban NQ (2020) Effect of tolerance on the evolution of antibiotic resistance under drug combinations. Science 367:200–204

    Article  CAS  PubMed  Google Scholar 

  • Lorenz A, Preuße M, Bruchmann S, Pawar V, Grahl N, Pils MC, Nolan LM, Filloux A, Weiss S, Häussler S (2019) Importance of flagella in acute and chronic Pseudomonas aeruginosa infections. Environ Microbiol 21:883–897

    Article  CAS  PubMed  Google Scholar 

  • Luong PM, Shogan BD, Zaborin A, Belogortseva N, Shrout JD, Zaborina O, Alverdy JC (2014) Emergence of the P2 phenotype in Pseudomonas aeruginosa PAO1 strains involves various mutations in mexT or mexF. J Bacteriol 196:504–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Lyczak JB, Cannon CL, Pier GB (2000) Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infect 10

    Google Scholar 

  • Machado G-BS, de Assis M-C, Leão R, Saliba AM, Silva MCA, Suassuna JH, de Oliveira AV, Plotkowski M-C (2010) ExoU-induced vascular hyperpermeability and platelet activation in the course of experimental Pseudomonas aeruginosa pneumosepsis. Shock Augusta Ga 33:315–321

    Article  Google Scholar 

  • Maldonado RF, Sá-Correia I, Valvano MA (2016) Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol Rev 40:480–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manina G, Dhar N, McKinney JD (2015) Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host Microbe 17:32–46

    Article  CAS  PubMed  Google Scholar 

  • Martin-Belmonte F, Mostov K (2008) Regulation of cell polarity during epithelial morphogenesis. Curr Opin Cell Biol 20:227–234

    Article  CAS  PubMed  Google Scholar 

  • Maunders E, Welch M (2017) Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS Microbiol Lett 364

    Google Scholar 

  • McCarthy AJ, Stabler RA, Taylor PW (2018a) Genome-wide identification by transposon insertion sequencing of Escherichia coli K1 genes essential for in vitro growth, gastrointestinal colonizing capacity, and survival in serum. J Bacteriol 200

    Google Scholar 

  • McCarthy KL, Wailan AM, Jennison AV, Kidd TJ, Paterson DL (2018b) P. aeruginosa blood stream infection isolates: a “full house” of virulence genes in isolates associated with rapid patient death and patient survival. Microb Pathog 119:81–85

    Article  CAS  PubMed  Google Scholar 

  • Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT (2015) Complement system part I—molecular mechanisms of activation and regulation. Front Immunol 6:262

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra M, Byrd MS, Sergeant S, Azad AK, Parsek MR, McPhail L, Schlesinger LS, Wozniak DJ (2012) Pseudomonas aeruginosa Psl polysaccharide reduces neutrophil phagocytosis and the oxidative response by limiting complement-mediated opsonization: Psl and the innate immune response towards P. aeruginosa. Cell Microbiol 14:95–106

    Article  CAS  PubMed  Google Scholar 

  • Mishra M, Ressler A, Schlesinger LS, Wozniak DJ (2015) Identification of OprF as a complement component C3 binding acceptor molecule on the surface of Pseudomonas aeruginosa. Infect Immun 83:3006–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Møller-Kristensen M, Ip WKE, Shi L, Gowda LD, Hamblin MR, Thiel S, Jensenius JC, Ezekowitz RAB, Takahashi K (2006) Deficiency of mannose-binding lectin greatly increases susceptibility to postburn infection with Pseudomonas aeruginosa. J Immunol 176:1769–1775

    Article  PubMed  Google Scholar 

  • Mostov K, Su T, ter Beest M (2003) Polarized epithelial membrane traffic: conservation and plasticity. Nat Cell Biol 5:287–293

    Article  CAS  PubMed  Google Scholar 

  • Mueller-Ortiz SL, Drouin SM, Wetsel RA (2004) The Alternative activation pathway and complement component C3 are critical for a protective immune response against Pseudomonas aeruginosa in a murine model of pneumonia. Infect Immun 72:2899–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy ZA, Szakács D, Boros E, Héja D, Vígh E, Sándor N, Józsi M, Oroszlán G, Dobó J, Gál P et al (2019) Ecotin, a microbial inhibitor of serine proteases, blocks multiple complement dependent and independent microbicidal activities of human serum. PLoS Pathog 15:e1008232

    Article  PubMed  PubMed Central  Google Scholar 

  • Nomura K, Obata K, Keira T, Miyata R, Hirakawa S, Takano K, Kohno T, Sawada N, Himi T, Kojima T (2014) Pseudomonas aeruginosa elastase causes transient disruption of tight junctions and downregulation of PAR-2 in human nasal epithelial cells. Respir Res 15:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Ochoa CD, Alexeyev M, Pastukh V, Balczon R, Stevens T (2012) Pseudomonas aeruginosa exotoxin Y is a promiscuous cyclase that increases endothelial tau phosphorylation and permeability. J Biol Chem 287:25407–25418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olszak T, Shneider MM, Latka A, Maciejewska B, Browning C, Sycheva LV, Cornelissen A, Danis-Wlodarczyk K, Senchenkova SN, Shashkov AS et al (2017) The O-specific polysaccharide lyase from the phage LKA1 tailspike reduces Pseudomonas virulence. Sci Rep 7:16302

    Article  PubMed  PubMed Central  Google Scholar 

  • Opota O, Croxatto A, Prod’hom G, Greub G (2015) Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 21:313–322

    CAS  Google Scholar 

  • Pedersen SS, Kharazmi A, Espersen F, Høiby N (1990) Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun 58:3363–3368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pederson KJ, Barbieri JT (1998) Intracellular expression of the ADP-ribosyltransferase domain of Pseudomonas exoenzyme S is cytotoxic to eukaryotic cells. Mol Microbiol 30:751–759

    Article  CAS  PubMed  Google Scholar 

  • Pederson KJ, Vallis AJ, Aktories K, Frank DW, Barbieri JT (1999) The amino-terminal domain of Pseudomonas aeruginosa ExoS disrupts actin filaments via small-molecular-weight GTP-binding proteins. Mol Microbiol 32:393–401

    Article  CAS  PubMed  Google Scholar 

  • Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z (2015) Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 112:7563–7568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pestrak MJ, Baker P, Dellos-Nolan S, Hill PJ, Passos da Silva D, Silver H, Lacdao I, Raju D, Parsek MR, Wozniak DJ et al (2019) Treatment with the Pseudomonas aeruginosa glycoside hydrolase PslG combats wound infection by improving antibiotic efficacy and host innate immune activity. Antimicrob Agents Chemother 63

    Google Scholar 

  • Peyrusson F, Varet H, Nguyen TK, Legendre R, Sismeiro O, Coppée J-Y, Wolz C, Tenson T, Van Bambeke F (2020) Intracellular Staphylococcus aureus persisters upon antibiotic exposure. Nat Commun 11:2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phan M-D, Peters KM, Sarkar S, Lukowski SW, Allsopp LP, Gomes Moriel D, Achard MES, Totsika M, Marshall VM, Upton M et al (2013) The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone. PLoS Genet 9:e1003834

    Article  PubMed  PubMed Central  Google Scholar 

  • Pier GB, Thomas DM (1983) Characterization of the human immune response to a polysaccharide vaccine from Pseudomonas aeruginosa. J Infect Dis 148:206–213

    Article  CAS  PubMed  Google Scholar 

  • Pier GB, Coleman F, Grout M, Franklin M, Ohman DE (2001) Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 69:1895–1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pont S, Fraikin N, Caspar Y, Van Melderen L, Attree I, Cretin F (2020) Bacterial behavior in human blood reveals complement evaders with some persister-like features. PLoS Pathog 16:e1008893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priebe GP, Dean CR, Zaidi T, Meluleni GJ, Coleman FT, Coutinho YS, Noto MJ, Urban TA, Pier GB, Goldberg JB (2004) The galU Gene of Pseudomonas aeruginosa is required for corneal infection and efficient systemic spread following pneumonia but not for infection confined to the lung. Infect Immun 72:4224–4232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rangel SM, Logan LK, Hauser AR (2014) The ADP-ribosyltransferase domain of the effector protein ExoS inhibits phagocytosis of Pseudomonas aeruginosa during pneumonia. MBio 5:e01080-01014

    Article  Google Scholar 

  • Rao L, De La Rosa I, Xu Y, Sha Y, Bhattacharya A, Holtzman MJ, Gilbert BE, Eissa NT (2021) Pseudomonas aeruginosa survives in epithelia by ExoS-mediated inhibition of autophagy and mTOR. EMBO Rep 22

    Google Scholar 

  • Reboud E, Bouillot S, Patot S, Béganton B, Attrée I, Huber P (2017) Pseudomonas aeruginosa ExlA and Serratia marcescens ShlA trigger cadherin cleavage by promoting calcium influx and ADAM10 activation. PLoS Pathog 13:e1006579

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruffin M, Brochiero E (2019) Repair process impairment by Pseudomonas aeruginosa in epithelial tissues: major features and potential therapeutic avenues. Front Cell Infect Microbiol 9:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sana TG, Hachani A, Bucior I, Soscia C, Garvis S, Termine E, Engel J, Filloux A, Bleves S (2012) The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and fur and modulates internalization in epithelial cells. J Biol Chem 287:27095–27105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sana TG, Baumann C, Merdes A, Soscia C, Rattei T, Hachani A, Jones C, Bennett KL, Filloux A, Superti-Furga G et al (2015) Internalization of Pseudomonas aeruginosa strain PAO1 into epithelial cells is promoted by interaction of a T6SS effector with the microtubule network. MBio 6

    Google Scholar 

  • Sana TG, Berni B, Bleves S (2016) The T6SSs of Pseudomonas aeruginosa strain PAO1 and their effectors: beyond bacterial-cell targeting. Front Cell Infect Microbiol 6:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Larrayoz AF, Elhosseiny NM, Chevrette MG, Fu Y, Giunta P, Spallanzani RG, Ravi K, Pier GB, Lory S, Maira-Litrán T (2017) Complexity of complement resistance factors expressed by Acinetobacter baumannii needed for survival in human serum. J Immunol Baltim Md 1950(199):2803–2814

    Google Scholar 

  • Sato H, Frank DW (2004) ExoU is a potent intracellular phospholipase. Mol Microbiol 53:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Sayner SL, Frank DW, King J, Chen H, VandeWaa J, Stevens T (2004) Paradoxical cAMP-induced lung endothelial hyperpermeability revealed by Pseudomonas aeruginosa ExoY. Circ Res 95:196–203

    Article  CAS  PubMed  Google Scholar 

  • Scharfman A, Arora SK, Delmotte P, Van Brussel E, Mazurier J, Ramphal R, Roussel P (2001) Recognition of Lewis x derivatives present on mucins by flagellar components of Pseudomonas aeruginosa. Infect Immun 69:5243–5248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiller NL, Joiner KA (1986) Interaction of complement with serum-sensitive and serum-resistant strains of Pseudomonas aeruginosa. Infect Immun 54:689–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidtchen A, Holst E, Tapper H, Björck L (2003) Elastase-producing Pseudomonas aeruginosa degrade plasma proteins and extracellular products of human skin and fibroblasts, and inhibit fibroblast growth. Microb Pathog 34:47–55

    Article  CAS  PubMed  Google Scholar 

  • Schniederberend M, Williams JF, Shine E, Shen C, Jain R, Emonet T, Kazmierczak BI (2019) Modulation of flagellar rotation in surface-attached bacteria: a pathway for rapid surface-sensing after flagellar attachment. PLoS Pathog 15:e1008149

    Article  PubMed  PubMed Central  Google Scholar 

  • Schultz DR, Miller KD (1974) Elastase of Pseudomonas aeruginosa: inactivation of complement components and complement-derived chemotactic and phagocytic factors. Infect Immun 10:128–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarzer C, Fischer H, Machen TE (2016) Chemotaxis and binding of Pseudomonas aeruginosa to scratch-wounded human cystic fibrosis airway epithelial cells. PLoS One 11:e0150109

    Article  PubMed  PubMed Central  Google Scholar 

  • Short FL, Di Sario G, Reichmann NT, Kleanthous C, Parkhill J, Taylor PW (2020) Genomic profiling reveals distinct routes to complement resistance in Klebsiella pneumoniae. Infect Immun 88

    Google Scholar 

  • Siryaporn A, Kuchma SL, O’Toole GA, Gitai Z (2014) Surface attachment induces Pseudomonas aeruginosa virulence. Proc Natl Acad Sci USA 111:16860–16865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soong G, Parker D, Magargee M, Prince AS (2008) The type III toxins of Pseudomonas aeruginosa disrupt epithelial barrier function. J Bacteriol 190:2814–2821

    Article  CAS  PubMed  Google Scholar 

  • Stapels DAC, Hill PWS, Westermann AJ, Fisher RA, Thurston TL, Saliba A-E, Blommestein I, Vogel J, Helaine S (2018) Salmonella persisters undermine host immune defenses during antibiotic treatment. Science 362:1156–1160

    Article  CAS  PubMed  Google Scholar 

  • Steadman R, Heck LW, Abrahamson DR (1993) The role of proteases in the pathogenesis of Pseudomonas aeruginosa infections. In: Campa M, Bendinelli M, Friedman H (eds) Pseudomonas aeruginosa as an opportunistic pathogen. Springer, Boston, MA, pp 129–143

    Chapter  Google Scholar 

  • Stevens TC, Ochoa CD, Morrow KA, Robson MJ, Prasain N, Zhou C, Alvarez DF, Frank DW, Balczon R, Stevens T (2014) The Pseudomonas aeruginosa exoenzyme Y impairs endothelial cell proliferation and vascular repair following lung injury. Am J Physiol Lung Cell Mol Physiol 306:L915–L924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun J, Barbieri JT (2003) Pseudomonas aeruginosa ExoT ADP-ribosylates CT10 regulator of kinase (Crk) proteins. J Biol Chem 278:32794–32800

    Article  CAS  PubMed  Google Scholar 

  • Swift AJ, Collins TS, Bugelski P, Winkelstein JA (1994) Soluble human complement receptor type 1 inhibits complement-mediated host defense. Clin Diagn Lab Immunol 1:585–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327

    Article  PubMed  Google Scholar 

  • Tamura Y, Suzuki S, Sawada T (1992) Role of elastase as a virulence factor in experimental Pseudomonas aeruginosa infection in mice. Microb Pathog 12:237–244

    Article  CAS  PubMed  Google Scholar 

  • Thanabalasuriar A, Surewaard BG, Willson ME, Neupane AS, Stover CK, Warrener P, Wilson G, Keller AE, Sellman BR, DiGiandomenico A et al (2017) Bispecific antibody targets multiple Pseudomonas aeruginosa evasion mechanisms in the lung vasculature. J Clin Invest 127:2249–2261

    Article  PubMed  PubMed Central  Google Scholar 

  • Torrens G, Barceló IM, Pérez-Gallego M, Escobar-Salom M, Tur-Gracia S, Munar-Bestard M, González-Nicolau MDM, Cabrera-Venegas YJ, Rigo-Rumbos EN, Cabot G et al (2019) Profiling the susceptibility of Pseudomonas aeruginosa strains from acute and chronic infections to cell-wall-targeting immune proteins. Sci Rep 9:3575

    Article  PubMed  PubMed Central  Google Scholar 

  • Tran CS, Rangel SM, Almblad H, Kierbel A, Givskov M, Tolker-Nielsen T, Hauser AR, Engel JN (2014) The Pseudomonas aeruginosa type III translocon is required for biofilm formation at the epithelial barrier. PLoS Pathog 10:e1004479

    Article  PubMed  PubMed Central  Google Scholar 

  • Vachino G, Heck LW, Gelfand JA, Kaplan MM, Burke JF, Berninger RW, McAdam KPWJ (1988) Inhibition of human neutrophil and pseudomonas elastases by the amyloid P-component: a constituent of elastic fibers and amyloid deposits. J Leukoc Biol 44:529–534

    Article  CAS  PubMed  Google Scholar 

  • Vallés J, Alvarez-Lerma F, Palomar M, Blanco A, Escoresca A, Armestar F, Sirvent JM, Balasini C, Zaragoza R, Marín M et al (2011) Health-care-associated bloodstream infections at admission to the ICU. Chest 139:810–815

    Article  PubMed  Google Scholar 

  • Vareechon C, Zmina SE, Karmakar M, Pearlman E, Rietsch A (2017) Pseudomonas aeruginosa effector ExoS inhibits ROS production in human neutrophils. Cell Host Microbe 21:611–618.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vikström E, Tafazoli F, Magnusson K-E (2006) Pseudomonas aeruginosa quorum sensing molecule N-(3 oxododecanoyl)-l-homoserine lactone disrupts epithelial barrier integrity of Caco-2 cells. FEBS Lett 580:6921–6928

    Article  PubMed  Google Scholar 

  • Vikström E, Bui L, Konradsson P, Magnusson K-E (2009) The junctional integrity of epithelial cells is modulated by Pseudomonas aeruginosa quorum sensing molecule through phosphorylation-dependent mechanisms. Exp Cell Res 315:313–326

    Article  PubMed  Google Scholar 

  • Vitkauskienė A, Skrodenienė E, Dambrauskienė A, Macas A, Sakalauskas R (2010) Pseudomonas aeruginosa bacteremia: resistance to antibiotics, risk factors, and patient mortality. Medicina (Mex) 46:490

    Article  Google Scholar 

  • Wagener BM, Hu R, Wu S, Pittet J-F, Ding Q, Che P (2021) The role of Pseudomonas aeruginosa virulence factors in cytoskeletal dysregulation and lung barrier dysfunction. Toxins 13:776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber B, Nickol MM, Jagger KS, Saelinger CB (1982) Interaction of Pseudomonas exoproducts with phagocytic cells. Can J Microbiol 28:679–685

    Article  CAS  PubMed  Google Scholar 

  • Weimer ET, Ervin SE, Wozniak DJ, Mizel SB (2009) Immunization of young African green monkeys with OprF epitope 8-OprI-type A- and B-flagellin fusion proteins promotes the production of protective antibodies against nonmucoid Pseudomonas aeruginosa. Vaccine 27:6762–6769

    Article  CAS  PubMed  Google Scholar 

  • Wells TJ, Whitters D, Sevastsyanovich YR, Heath JN, Pravin J, Goodall M, Browning DF, O’Shea MK, Cranston A, De Soyza A et al (2014) Increased severity of respiratory infections associated with elevated anti-LPS IgG2 which inhibits serum bactericidal killing. J Exp Med 211:1893–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells TJ, Davison J, Sheehan E, Kanagasundaram S, Spickett G, MacLennan CA, Stockley RA, Cunningham AF, Henderson IR, De Soyza A (2017) The use of plasmapheresis in patients with bronchiectasis with Pseudomonas aeruginosa infection and inhibitory antibodies. Am J Respir Crit Care Med 195:955–958

    Article  CAS  PubMed  Google Scholar 

  • Wood LF, Ohman DE (2015) Cell wall stress activates expression of a novel stress response facilitator (SrfA) under σ22 (AlgT/U) control in Pseudomonas aeruginosa. Microbiology 161:30–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wretlind B, Pavlovskis OR (1983) Pseudomonas aeruginosa elastase and its role in Pseudomonas infections. Rev Infect Dis 5(Suppl 5):S998–S1004

    Article  CAS  PubMed  Google Scholar 

  • Yahr TL, Vallis AJ, Hancock MK, Barbieri JT, Frank DW (1998) ExoY, an adenylate cyclase secreted by the Pseudomonas aeruginosa type III system. Proc Natl Acad Sci U S A 95:13899–13904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Younger JG, Shankar-Sinha S, Mickiewicz M, Brinkman AS, Valencia GA, Sarma JV, Younkin EM, Standiford TJ, Zetoune FS, Ward PA (2003) Murine complement interactions with Pseudomonas aeruginosa and their consequences during pneumonia. Am J Respir Cell Mol Biol 29:432–438

    Article  CAS  PubMed  Google Scholar 

  • Zaidi TS, Zaidi T, Pier GB (2010) Role of neutrophils, MyD88-mediated neutrophil recruitment, and complement in antibody-mediated defense against Pseudomonas aeruginosa keratitis. Investig Opthalmology Vis Sci 51:2085

    Article  Google Scholar 

  • Zhang L, Kirienko NV (2021) High-throughput approaches for the identification of Pseudomonas aeruginosa antivirulents. MBio 12

    Google Scholar 

  • Zulianello L, Canard C, Köhler T, Caille D, Lacroix J-S, Meda P (2006) Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 74:3134–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Work in the PB&RC lab is supported by a grant from the Laboratory of Excellence GRAL, funded within the graduate school (Ecoles Universitaires de Recherche) at University Grenoble Alpes under identifier CBH-EUR-GS (ANR-17-EURE-0003), and funding awarded to I.A. by the Fondation pour la Recherche Médicale (Team FRM 2017, DEQ20170336705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ina Attrée .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pont, S., Janet-Maitre, M., Faudry, E., Cretin, F., Attrée, I. (2022). Molecular Mechanisms Involved in Pseudomonas aeruginosa Bacteremia. In: Filloux, A., Ramos, JL. (eds) Pseudomonas aeruginosa. Advances in Experimental Medicine and Biology, vol 1386. Springer, Cham. https://doi.org/10.1007/978-3-031-08491-1_12

Download citation

Publish with us

Policies and ethics