Skip to main content

Advertisement

Log in

Core–Shell Type Lipidic and Polymeric Nanocapsules: the Transformative Multifaceted Delivery Systems

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Amongst the several nano-drug delivery systems, lipid or polymer-based core–shell nanocapsules (NCs) have garnered much attention of researchers owing to its multidisciplinary properties and wide application. NCs are structured core–shell systems in which the core is an aqueous or oily phase protecting the encapsulated drug from environmental conditions, whereas the shell can be lipidic or polymeric. The core is stabilized by surfactant/lipids/polymers, which control the release of the drug. The presence of a plethora of biocompatible lipids and polymers with the provision of amicable surface modifications makes NCs an ideal choice for precise drug delivery. In the present article, multiple lipidic and polymeric NC (LNCs and PNCs) systems are described with an emphasis on fabrication methods and characterization techniques. Far-reaching applications as a carrier or delivery system are demonstrated for oral, parenteral, nasal, and transdermal routes of administration to enhance the bioavailability of hard-to-formulate drugs and to achieve sustained and targeted delivery. This review provide in depth understanding on core–shell NC’s mechanism of absorption, surface modification, size tuning, and toxicity moderation which overshadows the drawbacks of conventional approaches. Additionally, the review shines a spotlight on the current challenges associated with core–shell NCs and applications in the foreseeable future.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used to support this review is included within the article.

References

  1. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. Journal of nanobiotechnology. 2018;16(1):1–33.

  2. Singh A, Handa M, Ruwali M, Flora S, Shukla R, Kesharwani P. Nanocarrier mediated autophagy: an emerging trend for cancer therapy. Process Biochem. 2021;109:198–206.

    Article  CAS  Google Scholar 

  3. Varma LT, Singh N, Gorain B, Choudhury H, Tambuwala MM, Kesharwani P, et al. Recent advances in self-assembled nanoparticles for drug delivery. Curr Drug Deliv. 2020;17(4):279–91.

    Article  CAS  Google Scholar 

  4. Mhaske A, Singh S, Abourehab MA, Kumar A, Kesharwani P, Shukla R. Recent pharmaceutical engineered trends as theranostics for Japanese Encephalitis. Process Biochemistry. 2022.

  5. Ghaffari M, Dolatabadi JEN. Nanotechnology for pharmaceuticals. Industrial Applications of Nanomaterials. Elsevier; 2019. p. 475–502.

  6. Singhvi G, Rapalli VK, Nagpal S, Dubey SK, Saha RN. Nanocarriers as potential targeted drug delivery for cancer therapy. Nanoscience in Medicine Vol 1. Springer; 2020. p. 51–88.

  7. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385:113–42. https://doi.org/10.1016/j.ijpharm.2009.10.018.

    Article  CAS  Google Scholar 

  8. Erdoğar N, Akkın S, Bilensoy E. Nanocapsules for drug delivery: an updated review of the last decade. Recent Pat Drug Delivery Formulation. 2019;12:252–66. https://doi.org/10.2174/1872211313666190123153711.

    Article  CAS  Google Scholar 

  9. Niu Z, Conejos-Sánchez I, Griffin BT, O’Driscoll CM, Alonso MJ. Lipid-based nanocarriers for oral peptide delivery. Adv Drug Deliv Rev. 2016;106:337–54. https://doi.org/10.1016/j.addr.2016.04.001.

    Article  CAS  Google Scholar 

  10. Marturano V, Cerruti P, Giamberini M, Tylkowski B, Ambrogi V. Light-responsive polymer micro-and nano-capsules. Polymers. 2017;9. doi: https://doi.org/10.3390/polym9010008.

  11. Singh A, Kumar A, Verma RK, Shukla R. Silymarin encapsulated nanoliquid crystals for improved activity against beta amyloid induced cytotoxicity. Int J Biol Macromol. 2020;149:1198–206.

    Article  CAS  Google Scholar 

  12. Singh A, Mhaske A, Shukla R. Fabrication of TPGS-grafted polyamidoamine dendrimer for enhanced piperine brain delivery and pharmacokinetics. AAPS PharmSciTech. 2022;23(7):1–14.

    Article  Google Scholar 

  13. Park MJ, Balakrishnan P, Yang SG. Polymeric nanocapsules with SEDDS oil-core for the controlled and enhanced oral absorption of cyclosporine. Int J Pharm. 2013;441:757–64. https://doi.org/10.1016/j.ijpharm.2012.10.018.

    Article  CAS  Google Scholar 

  14. Berrecoso G, Crecente-Campo J, Alonso MJ. Quantification of the actual composition of polymeric nanocapsules: a quality control analysis. Drug Deliv Transl Res. 2022. https://doi.org/10.1007/s13346-022-01150-5.

    Article  Google Scholar 

  15. Frank LA, Contri RV, Beck RCR, Pohlmann AR, Guterres SS. Improving drug biological effects by encapsulation into polymeric nanocapsules. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2015;7:623–39. https://doi.org/10.1002/wnan.1334.

    Article  CAS  Google Scholar 

  16. Shen Y, Jin E, Zhang B, Murphy CJ, Sui M, Zhao J, et al. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J Am Chem Soc. 2010;132(12):4259–65.

    Article  CAS  Google Scholar 

  17. Doan-Nguyen TP, Jiang S, Koynov K, Landfester K, Crespy D. Ultrasmall nanocapsules obtained by controlling Ostwald ripening. Angew Chem Int Ed. 2021;60(33):18094–102.

    Article  CAS  Google Scholar 

  18. Mora-Huertas CE, Fessi H, Elaissari A. Polymer-based nanocapsules for drug delivery. Int J Pharm. 2010;385(1–2):113–42.

    Article  CAS  Google Scholar 

  19. Sombra FM, Richter AR, de Araújo AR, Ribeiro FdOS, Mendes JdFS, dos Santos Fontenelle RO, et al. Nanocapsules of Sterculia striata acetylated polysaccharide as a potential monomeric amphotericin B delivery matrix. International journal of biological macromolecules. 2019;130:655–63.

  20. Hureaux J, Lagarce F, Gagnadoux F, Rousselet M-C, Moal V, Urban T, et al. Toxicological study and efficacy of blank and paclitaxel-loaded lipid nanocapsules after iv administration in mice. Pharm Res. 2010;27(3):421–30.

    Article  CAS  Google Scholar 

  21. Sun H, Chen CK, Cui H, Cheng C. Crosslinked polymer nanocapsules. Polym Int. 2016;65:351–61. https://doi.org/10.1002/pi.5077.

    Article  CAS  Google Scholar 

  22. Weiss-Angeli V, Poletto FS, de Marco SL, Salvador M, da Silveira NP, Guterres SS, et al. Sustained antioxidant activity of quercetin-loaded lipid-core nanocapsules. J Nanosci Nanotechnol. 2012;12(3):2874–80. https://doi.org/10.1166/jnn.2012.5770.

    Article  CAS  Google Scholar 

  23. Cosco D, Paolino D, De Angelis F, Cilurzo F, Celia C, Di Marzio L, et al. Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response. Eur J Pharm Biopharm. 2015;89:30–9. https://doi.org/10.1016/j.ejpb.2014.11.012.

    Article  CAS  Google Scholar 

  24. Wang T, Feng Z, He N, Wang Z, Li S, Guo Y, et al. A novel preparation of nanocapsules from alginate-oligochitosan. J Nanosci Nanotechnol. 2007;7:4571–4. https://doi.org/10.1166/jnn.2007.882.

    Article  CAS  Google Scholar 

  25. Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials. 2020;10. doi: https://doi.org/10.3390/nano10050847.

  26. Qiu C, Julian McClements D, Jin Z, Qin Y, Hu Y, Xu X, et al. Resveratrol-loaded core-shell nanostructured delivery systems: cyclodextrin-based metal-organic nanocapsules prepared by ionic gelation. Food Chemistry. 2020;317:126328. doi: https://doi.org/10.1016/j.foodchem.2020.126328.

  27. Silva AO, Cunha RS, Hotza D, Machado RAF. Chitosan as a matrix of nanocomposites: a review on nanostructures, processes, properties, and applications. Carbohydrate Polymers. 2021;272:118472. doi: https://doi.org/10.1016/j.carbpol.2021.118472.

  28. Shoueir KR, El-Desouky N, Rashad MM, Ahmed M, Janowska I, El-Kemary M. Chitosan based-nanoparticles and nanocapsules: overview, physicochemical features, applications of a nanofibrous scaffold, and bioprinting. Int J Biol Macromol. 2021;167:1176–97.

    Article  CAS  Google Scholar 

  29. Rinaudo M. Chitin and chitosan: properties and applications. Progress in Polymer Science (Oxford). 2006;31:603–32. https://doi.org/10.1016/j.progpolymsci.2006.06.001.

    Article  CAS  Google Scholar 

  30. Szafraniec-Szczęsny J, Janik-Hazuka M, Odrobińska J, Zapotoczny S. Polymer capsules with hydrophobic liquid cores as functional nanocarriers. Polymers. 2020;12:1–25. https://doi.org/10.3390/polym12091999.

    Article  CAS  Google Scholar 

  31. Shariatinia Z. Pharmaceutical applications of chitosan. Adv Coll Interface Sci. 2019;263:131–94. https://doi.org/10.1016/j.cis.2018.11.008.

    Article  CAS  Google Scholar 

  32. Kumar S, Chauhan N, Gopal M, Kumar R, Dilbaghi N. Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid. Int J Biol Macromol. 2015;81:631–7. https://doi.org/10.1016/j.ijbiomac.2015.08.062.

    Article  CAS  Google Scholar 

  33. San HHM, Alcantara KP, Bulatao BPI, Chaichompoo W, Nalinratana N, Suksamrarn A, et al. Development of turmeric oil-loaded chitosan/alginate nanocapsules for cytotoxicity enhancement against breast cancer. Polymers (Basel). 2022;14(9). doi: https://doi.org/10.3390/polym14091835.

  34. Niculescu A-g. Applications of chitosan-alginate-based nanoparticles — an up-to-date review. 2022.

  35. Rivera MC, Pinheiro AC, Bourbon AI, Cerqueira MA, Vicente AA. Hollow chitosan/alginate nanocapsules for bioactive compound delivery. Int J Biol Macromol. 2015;79:95–102. https://doi.org/10.1016/j.ijbiomac.2015.03.003.

    Article  CAS  Google Scholar 

  36. Abatangelo G, Vindigni V, Avruscio G, Pandis L, Brun P. Hyaluronic acid: redefining its role. Cells. 2020;9(7). doi: https://doi.org/10.3390/cells9071743.

  37. De Frates K, Markiewicz T, Gallo P, Rack A, Weyhmiller A, Jarmusik B, et al. Protein polymer-based nanoparticles: fabrication and medical applications. Int J Mol Sci. 2018;19:1–20. https://doi.org/10.3390/ijms19061717.

    Article  CAS  Google Scholar 

  38. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377–97. https://doi.org/10.3390/polym3031377.

    Article  CAS  Google Scholar 

  39. Dabholkar N, Waghule T, Krishna Rapalli V, Gorantla S, Alexander A, Narayan Saha R, et al. Lipid shell lipid nanocapsules as smart generation lipid nanocarriers. Journal of Molecular Liquids. 2021;339:117145. doi: https://doi.org/10.1016/j.molliq.2021.117145.

  40. Hirsjärvi S, Dufort S, Gravier J, Texier I, Yan Q, Bibette J, et al. Influence of size, surface coating and fine chemical composition on the in vitro reactivity and in vivo biodistribution of lipid nanocapsules versus lipid nanoemulsions in cancer models. Nanomedicine: Nanotechnology, biology and medicine. 2013;9(3):375–87.

  41. Huynh NT, Passirani C, Saulnier P, Benoit JP. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009;379:201–9. https://doi.org/10.1016/j.ijpharm.2009.04.026.

    Article  CAS  Google Scholar 

  42. Coradini K, Friedrich RB, Fonseca FN, Vencato MS, Andrade DF, Oliveira CM, et al. A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: in vivo studies. Eur J Pharm Sci. 2015;78:163–70. https://doi.org/10.1016/j.ejps.2015.07.012.

    Article  CAS  Google Scholar 

  43. Thomas O, Lagarce F. Lipid nanocapsules: a nanocarrier suitable for scale-up process. Journal of Drug Delivery Science and Technology. 2013;23(6):555–9.

    Article  CAS  Google Scholar 

  44. Huynh NT, Passirani C, Saulnier P, Benoît J-P. Lipid nanocapsules: a new platform for nanomedicine. Int J Pharm. 2009;379(2):201–9.

    Article  CAS  Google Scholar 

  45. Westesen K. Novel lipid-based colloidal dispersions as potential drug administration systems–expectations and reality. Colloid Polym Sci. 2000;278(7):608–18.

    Article  CAS  Google Scholar 

  46. Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems–an overview. Acta Pharmaceutica Sinica B. 2013;3(6):361–72.

    Article  Google Scholar 

  47. Dabholkar N, Waghule T, Rapalli VK, Gorantla S, Alexander A, Saha RN, et al. Lipid shell lipid nanocapsules as smart generation lipid nanocarriers. J Mol Liq. 2021;339: 117145.

    Article  CAS  Google Scholar 

  48. Behdarvand N, Bikhof Torbati M, Shaabanzadeh M. Tamoxifen-loaded PLA/DPPE-PEG lipid-polymeric nanocapsules for inhibiting the growth of estrogen-positive human breast cancer cells through cell cycle arrest. J Nanopart Res. 2020;22(9):1–15.

    Article  Google Scholar 

  49. Zhuang Y, Zhao Y, Wang B, Wang Q, Cai T, Cai Y. Strategies for preparing different types of lipid polymer hybrid nanoparticles in targeted tumor therapy. Curr Pharm Des. 2021;27(19):2274–88.

    Article  CAS  Google Scholar 

  50. Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85(3):427–43.

    Article  CAS  Google Scholar 

  51. Lammari N, Louaer O, Meniai AH, Elaissari A. Encapsulation of essential oils via nanoprecipitation process: overview, progress, challenges and prospects. Pharmaceutics. 2020;12(5):431.

    Article  CAS  Google Scholar 

  52. Bilati U, Allémann E, Doelker E. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci. 2005;24(1):67–75.

    Article  CAS  Google Scholar 

  53. Rivas CJM, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, et al. Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharm. 2017;532(1):66–81.

    Article  Google Scholar 

  54. Couvreur P, Barratt G, Fattal E, Vauthier C. Nanocapsule technology: a review. Critical Reviews™ in Therapeutic Drug Carrier Systems. 2002;19(2).

  55. Yan X, Bernard J, Ganachaud F. Nanoprecipitation as a simple and straightforward process to create complex polymeric colloidal morphologies. Adv Coll Interface Sci. 2021;294: 102474.

    Article  CAS  Google Scholar 

  56. Minost A, Delaveau J, Bolzinger M-A, Fessi H, Elaissari A. Nanoparticles via nanoprecipitation process. Recent Pat Drug Delivery Formulation. 2012;6(3):250–8.

    Article  CAS  Google Scholar 

  57. Timilsena YP, Akanbi TO, Khalid N, Adhikari B, Barrow CJ. Complex coacervation: principles, mechanisms and applications in microencapsulation. Int J Biol Macromol. 2019;121:1276–86.

    Article  CAS  Google Scholar 

  58. Aloys H, Korma SA, Alice TM, Chantal N, Ali AH, Abed SM, et al. Microencapsulation by complex coacervation: methods, techniques, benefits, and applications-a review. American Journal of Food Science and Nutrition Research. 2016;3(6):188–92.

    Google Scholar 

  59. Voorn MJ. Complex coacervation. I. General theoretical considerations. Recueil des Travaux Chimiques des Pays‐Bas. 1956;75(3):317–30.

  60. Burgess DJ. Complex coacervation: microcapsule formation. Macromolecular complexes in chemistry and biology. Springer; 1994. p. 285–300.

  61. Parisi OI, Puoci F, Restuccia D, Farina G, Iemma F, Picci N. Polyphenols and their formulations: different strategies to overcome the drawbacks associated with their poor stability and bioavailability. Polyphenols in human health and disease. Elsevier; 2014. p. 29–45.

  62. Rong X, Xie Y, Hao X, Chen T, Wang Y, Liu Y. Applications of polymeric nanocapsules in field of drug delivery systems. Curr Drug Discov Technol. 2011;8(3):173–87.

    Article  CAS  Google Scholar 

  63. Ding S, Serra CA, Vandamme TF, Yu W, Anton N. Double emulsions prepared by two–step emulsification: history, state-of-the-art and perspective. J Control Release. 2019;295:31–49.

    Article  CAS  Google Scholar 

  64. van der Graaf S, Schroën C, Boom R. Preparation of double emulsions by membrane emulsification—a review. J Membr Sci. 2005;251(1–2):7–15.

    Google Scholar 

  65. Deng S, Gigliobianco MR, Censi R, Di Martino P. Polymeric nanocapsules as nanotechnological alternative for drug delivery system: current status, challenges and opportunities. Nanomaterials. 2020;10(5):847.

    Article  CAS  Google Scholar 

  66. Iqbal M, Zafar N, Fessi H, Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm. 2015;496(2):173–90.

    Article  CAS  Google Scholar 

  67. Baena-Aristizábal CM, Fessi H, Elaissari A, Mora-Huertas CE. Biodegradable microparticles preparation by double emulsification—solvent extraction method: a systematic study. Colloids Surf, A. 2016;492:213–29.

    Article  Google Scholar 

  68. Schuch A, Wrenger J, Schuchmann HP. Production of W/O/W double emulsions. Part II: influence of emulsification device on release of water by coalescence. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2014;461:344–51.

  69. Silva M, Chandrapala J. Ultrasonic emulsification of milk proteins stabilized primary and double emulsions: a review. Food Reviews International. 2021:1–23.

  70. Shende P, Patil A, Prabhakar B. Layer-by-layer technique for enhancing physicochemical properties of actives. Journal of Drug Delivery Science and Technology. 2020;56: 101519.

    Article  CAS  Google Scholar 

  71. Rivero PJ, Goicoechea J, Arregui FJ. Layer-by-layer nano-assembly: a powerful tool for optical fiber sensing applications. Sensors. 2019;19(3):683.

    Article  Google Scholar 

  72. Srivastava S, Kotov NA. Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc Chem Res. 2008;41(12):1831–41.

    Article  CAS  Google Scholar 

  73. Ai H, Jones SA, Lvov YM. Biomedical applications of electrostatic layer-by-layer nano-assembly of polymers, enzymes, and nanoparticles. Cell Biochem Biophys. 2003;39(1):23–43.

    Article  CAS  Google Scholar 

  74. Moinard-Chécot D, Chevalier Y, Briançon S, Beney L, Fessi H. Mechanism of nanocapsules formation by the emulsion–diffusion process. J Colloid Interface Sci. 2008;317(2):458–68.

    Article  Google Scholar 

  75. Guinebretière S, Briançon S, Lieto J, Mayer C, Fessi H. Study of the emulsion-diffusion of solvent: preparation and characterization of nanocapsules. Drug Dev Res. 2002;57(1):18–33.

    Article  Google Scholar 

  76. Piñón-Segundo E, Llera-Rojas VG, Leyva-Gómez G, Urbán-Morlán Z, Mendoza-Muñoz N, Quintanar-Guerrero D. The emulsification-diffusion method to obtain polymeric nanoparticles: two decades of research. Nanoscale fabrication, optimization, scale-up and biological aspects of pharmaceutical nanotechnology. 2018:51–83.

  77. Lu X-Y, Wu D-C, Li Z-J, Chen G-Q. Polymer nanoparticles. Prog Mol Biol Transl Sci. 2011;104:299–323.

    Article  CAS  Google Scholar 

  78. Francis L, McCormick A, Vaessen D, Payne J. Development and measurement of stress in polymer coatings. J Mater Sci. 2002;37(22):4717–31.

    Article  CAS  Google Scholar 

  79. Kausar A. Polymer coating technology for high performance applications: fundamentals and advances. Journal of Macromolecular Science, Part A. 2018;55(5):440–8.

    Article  CAS  Google Scholar 

  80. Puetz J, Aegerter M. Dip coating technique. Sol-gel technologies for glass producers and users. 2004:37–48.

  81. Brinker CJ. Dip coating. Chemical solution deposition of functional oxide thin films. Springer; 2013. p. 233–61.

  82. Aziz F, Ismail AF. Spray coating methods for polymer solar cells fabrication: a review. Mater Sci Semicond Process. 2015;39:416–25.

    Article  CAS  Google Scholar 

  83. Talib R, Saad S, Toff M, Hashim H. Thermal spray coating technology: a review. Solid State Sci Technol. 2003;11(1):109–17.

    Google Scholar 

  84. Gomes MLS, da Silva NN, Borsato DM, Pretes AP, Nadal JM, Novatski A, et al. Long-lasting anti-platelet activity of cilostazol from poly (ε-caprolactone)-poly (ethylene glycol) blend nanocapsules. Mater Sci Eng, C. 2019;94:694–702.

    Article  CAS  Google Scholar 

  85. Ramos P, Pedra N, Soares M, Da Silveira E, Oliveira P, Grecco F, et al. Ketoprofen-loaded rose hip oil nanocapsules attenuate chronic inflammatory response in a pre-clinical trial in mice. Mater Sci Eng, C. 2019;103: 109742.

    Article  CAS  Google Scholar 

  86. Oliveira ACS, Oliveira PM, Cunha-Filho M, Gratieri T, Gelfuso GM. Latanoprost loaded in polymeric nanocapsules for effective topical treatment of alopecia. AAPS PharmSciTech. 2020;21(8):1–7.

    Article  Google Scholar 

  87. Ramzy L, Metwally AA, Nasr M, Awad GA. Novel thymoquinone lipidic core nanocapsules with anisamide-polymethacrylate shell for colon cancer cells overexpressing sigma receptors. Sci Rep. 2020;10(1):1–15.

    Article  Google Scholar 

  88. Katiyar SS, Ghadi R, Kushwah V, Dora CP, Jain S. Lipid and biosurfactant based core–shell-type nanocapsules having high drug loading of paclitaxel for improved breast cancer therapy. ACS Biomater Sci Eng. 2020;6(12):6760–9.

    Article  CAS  Google Scholar 

  89. Sun R, Zhang A, Ge Y, Gou J, Yin T, He H, et al. Ultra-small-size Astragaloside-IV loaded lipid nanocapsules eye drops for the effective management of dry age-related macular degeneration. 2020;17(9):1305–20.

    CAS  Google Scholar 

  90. Wang S-Q, Zhang Q, Sun C, Liu G-Y. Ifosfamide-loaded lipid-core-nanocapsules to increase the anticancer efficacy in MG63 osteosarcoma cells. Saudi Journal of Biological Sciences. 2018;25(6):1140–5.

    Article  CAS  Google Scholar 

  91. Steinmacher FR, Baier G, Musyanovych A, Landfester K, Araújo PH, Sayer C. Design of cross-linked starch nanocapsules for enzyme-triggered release of hydrophilic compounds. Processes. 2017;5(2):25.

    Article  Google Scholar 

  92. Lv Y, Yang F, Li X, Zhang X, Abbas S. Formation of heat-resistant nanocapsules of jasmine essential oil via gelatin/gum arabic based complex coacervation. Food Hydrocolloids. 2014;35:305–14.

    Article  CAS  Google Scholar 

  93. Cé R, Pacheco BZ, Ciocheta TM, Barbosa FS, de CS Alves A, Dallemole DR, et al. Antibacterial activity against Gram-positive bacteria using fusidic acid-loaded lipid-core nanocapsules. Reactive and Functional Polymers. 2021;162:104876.

  94. Xavier-Junior FH, do Egito EST, do Vale Morais AR, do Nascimento Alencar E, Maciuk A, Vauthier C. Experimental design approach applied to the development of chitosan coated poly (isobutylcyanoacrylate) nanocapsules encapsulating copaiba oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2018;536:251–8.

  95. Paolino D, Cosco D, Celano M, Moretti S, Puxeddu E, Russo D, et al. Gemcitabine-loaded biocompatible nanocapsules for the effective treatment of human cancer. Nanomedicine. 2013;8(2):193–201.

    Article  CAS  Google Scholar 

  96. Baran ET, Özer N, Hasirci V. Poly (hydroxybutyrate-co-hydroxyvalerate) nanocapsules as enzyme carriers for cancer therapy: an in vitro study. J Microencapsul. 2002;19(3):363–76.

    Article  CAS  Google Scholar 

  97. Singh S, Vijayakumar MR, Dewangan HK. Lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophillic vinorelbine bitartrate: preparation, optimization, characterization and in vitro safety assessment for intravenous administration. Curr Drug Deliv. 2018;15(9):1284–93.

    Article  Google Scholar 

  98. Fraj A, Jaâfar F, Marti M, Coderch L, Ladhari N. A comparative study of oregano (Origanum vulgare L.) essential oil-based polycaprolactone nanocapsules/microspheres: preparation, physicochemical characterization, and storage stability. Industrial crops and products. 2019;140:111669.

  99. Mora-Huertas CE, Garrigues O, Fessi H, Elaissari A. Nanocapsules prepared via nanoprecipitation and emulsification–diffusion methods: comparative study. Eur J Pharm Biopharm. 2012;80(1):235–9.

    Article  CAS  Google Scholar 

  100. Surassmo S, Min S-G, Bejrapha P, Choi M-J. Effects of surfactants on the physical properties of capsicum oleoresin-loaded nanocapsules formulated through the emulsion–diffusion method. Food Res Int. 2010;43(1):8–17.

    Article  CAS  Google Scholar 

  101. Esmaeili A, Niknam S. Characterization of nanocapsules containing Elaeagnus angustifolia L. extract prepared using an emulsion–diffusion process. Flavour and Fragrance Journal. 2013;28(5):309–15.

  102. Fu C, Ding C, Sun X, Fu A. Curcumin nanocapsules stabilized by bovine serum albumin-capped gold nanoclusters (BSA-AuNCs) for drug delivery and theranosis. Mater Sci Eng, C. 2018;87:149–54. https://doi.org/10.1016/j.msec.2017.12.028.

    Article  CAS  Google Scholar 

  103. Youm I, Yang X, Murowchick JB, Youan B-BC. Encapsulation of docetaxel in oily core polyester nanocapsules intended for breast cancer therapy. Nanoscale research letters. 2011;6(1):1–12.

  104. Belbekhouche S, Mansour O, Carbonnier B. Promising sub-100 nm tailor made hollow chitosan/poly (acrylic acid) nanocapsules for antibiotic therapy. J Colloid Interface Sci. 2018;522:183–90.

    Article  CAS  Google Scholar 

  105. Elbaz NM, Owen A, Rannard S, McDonald TO. Controlled synthesis of calcium carbonate nanoparticles and stimuli-responsive multi-layered nanocapsules for oral drug delivery. Int J Pharm. 2020;574: 118866.

    Article  CAS  Google Scholar 

  106. Łukasiewicz S, Szczepanowicz K, Podgórna K, Błasiak E, Majeed N, Ogren SOÖ, et al. Encapsulation of clozapine in polymeric nanocapsules and its biological effects. Colloids Surf, B. 2016;140:342–52.

    Article  Google Scholar 

  107. Ye S, Wang C, Liu X, Tong Z. Multilayer nanocapsules of polysaccharide chitosan and alginate through layer-by-layer assembly directly on PS nanoparticles for release. J Biomater Sci Polym Ed. 2005;16(7):909–23.

    Article  CAS  Google Scholar 

  108. Modena MM, Rühle B, Burg TP, Wuttke S. Nanoparticle characterization: what to measure? Adv Mater. 2019;31(32):1901556.

    Article  Google Scholar 

  109. Patil RM, Deshpande PP, Aalhate M, Gananadhamu S, Singh PK. An update on sophisticated and advanced analytical tools for surface characterization of nanoparticles. Surfaces and Interfaces. 2022:102165.

  110. Kumar A, Dixit CK. Methods for characterization of nanoparticles. Advances in nanomedicine for the delivery of therapeutic nucleic acids. Elsevier; 2017. p. 43–58.

  111. Jafari SM, Esfanjani AF. Instrumental analysis and characterization of nanocapsules. Nanoencapsulation technologies for the food and nutraceutical industries. Elsevier; 2017. p. 524–44.

  112. Titus D, Samuel EJJ, Roopan SM. Nanoparticle characterization techniques. Green synthesis, characterization and applications of nanoparticles. Elsevier; 2019. p. 303–19.

  113. Bapat P, Ghadi R, Chaudhari D, Katiyar SS, Jain S. Tocophersolan stabilized lipid nanocapsules with high drug loading to improve the permeability and oral bioavailability of curcumin. Int J Pharm. 2019;560:219–27.

    Article  CAS  Google Scholar 

  114. Poletto FS, Beck RC, Guterres SS, Pohlmann AR. Polymeric nanocapsules: concepts and applications. Nanocosmetics and nanomedicines. 2011:49–68.

  115. Akbari B, Tavandashti MP, Zandrahimi M. Particle size characterization of nanoparticles–a practical approach. Iran J Mater Sci Eng. 2011;8(2):48–56.

    CAS  Google Scholar 

  116. Clogston JD, Patri AK. Zeta potential measurement. Characterization of nanoparticles intended for drug delivery. Springer; 2011. p. 63–70.

  117. Tantra R, Schulze P, Quincey P. Effect of nanoparticle concentration on zeta-potential measurement results and reproducibility. Particuology. 2010;8(3):279–85.

    Article  CAS  Google Scholar 

  118. Kathe N, Henriksen B, Chauhan H. Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations. Drug Dev Ind Pharm. 2014;40(12):1565–75.

    Article  CAS  Google Scholar 

  119. Lv Y, He H, Qi J, Lu Y, Zhao W, Dong X, et al. Visual validation of the measurement of entrapment efficiency of drug nanocarriers. Int J Pharm. 2018;547(1–2):395–403.

    Article  CAS  Google Scholar 

  120. Michalowski C, Guterres S, Dalla CT. Microdialysis for evaluating the entrapment and release of a lipophilic drug from nanoparticles. J Pharm Biomed Anal. 2004;35(5):1093–100.

    Article  CAS  Google Scholar 

  121. Liu X, Zhang Y, Tang X, Zhang H. Determination of entrapment efficiency and drug phase distribution of submicron emulsions loaded silybin. J Microencapsul. 2009;26(2):180–6.

    Article  CAS  Google Scholar 

  122. Spinnrock A, Cölfen H. Control of molar mass distribution by polymerization in the analytical ultracentrifuge. Angew Chem Int Ed. 2018;57(27):8284–7.

    Article  CAS  Google Scholar 

  123. Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731.

    Article  Google Scholar 

  124. Philipsen HJ. Determination of chemical composition distributions in synthetic polymers. J Chromatogr A. 2004;1037(1–2):329–50.

    Article  CAS  Google Scholar 

  125. Crucho CI, Barros MT. Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng, C. 2017;80:771–84.

    Article  CAS  Google Scholar 

  126. Coughlan D, Corrigan O. Drug–polymer interactions and their effect on thermoresponsive poly (N-isopropylacrylamide) drug delivery systems. Int J Pharm. 2006;313(1–2):163–74.

    Article  CAS  Google Scholar 

  127. El-Houssiny A, Ward A, Mostafa D, Abd-El-Messieh S, Abdel-Nour K, Darwish M, et al. Drug–polymer interaction between glucosamine sulfate and alginate nanoparticles: FTIR, DSC and dielectric spectroscopy studies. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2016;7(2): 025014.

    Google Scholar 

  128. Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharm. 2013;10(6):2093–110.

    Article  CAS  Google Scholar 

  129. Fitzpatrick F, Staal B, Schoenmakers P. Molar mass distributions by gradient liquid chromatography: predicting and tailoring selectivity. J Chromatogr A. 2005;1065(2):219–29.

    Article  CAS  Google Scholar 

  130. Haidar Ahmad IA, Striegel AM. Determining the absolute, chemical-heterogeneity-corrected molar mass averages, distribution, and solution conformation of random copolymers. Anal Bioanal Chem. 2010;396(4):1589–98.

    Article  CAS  Google Scholar 

  131. Singh PK, Srivastava AK, Dev A, Kaundal B, Choudhury SR, Karmakar S. 1, 3β-Glucan anchored, paclitaxel loaded chitosan nanocarrier endows enhanced hemocompatibility with efficient anti-glioblastoma stem cells therapy. Carbohyd Polym. 2018;180:365–75.

    Article  CAS  Google Scholar 

  132. Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release. 2004;95(3):627–38.

    Article  CAS  Google Scholar 

  133. Losa C, Marchal-Heussler L, Orallo F, Jato JLV, Alonso MJ. Design of new formulations for topical ocular administration: polymeric nanocapsules containing metipranolol. Pharm Res. 1993;10(1):80–7.

    Article  CAS  Google Scholar 

  134. Goethals EC, Elbaz A, Lopata AL, Bhargava SK, Bansal V. Decoupling the effects of the size, wall thickness, and porosity of curcumin-loaded chitosan nanocapsules on their anticancer efficacy: size is the winner. Langmuir. 2013;29(2):658–66.

    Article  CAS  Google Scholar 

  135. Degobert G, Aydin D. Lyophilization of nanocapsules: instability sources, formulation and process parameters. Pharmaceutics. 2021;13(8):1112.

    Article  CAS  Google Scholar 

  136. Mohanraj V, Chen Y. Nanoparticles-a review. Trop J Pharm Res. 2006;5(1):561–73.

    Google Scholar 

  137. Béduneau A, Saulnier P, Anton N, Hindré F, Passirani C, Rajerison H, et al. Pegylated nanocapsules produced by an organic solvent-free method: evaluation of their stealth properties. Pharm Res. 2006;23(9):2190–9.

    Article  Google Scholar 

  138. de Sousa Lobato KB, Paese K, Forgearini JC, Guterres SS, Jablonski A, de Oliveira RA. Characterisation and stability evaluation of bixin nanocapsules. Food Chem. 2013;141(4):3906–12.

    Article  Google Scholar 

  139. Battaglia L, Gallarate M. Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery. Expert Opin Drug Deliv. 2012;9(5):497–508.

    Article  CAS  Google Scholar 

  140. Kumar S, Gokhale R, Burgess DJ. Sugars as bulking agents to prevent nano-crystal aggregation during spray or freeze-drying. Int J Pharm. 2014;471(1–2):303–11.

    Article  CAS  Google Scholar 

  141. Bohr A, Water J, Beck-Broichsitter M, Yang M. Nanoembedded microparticles for stabilization and delivery of drug-loaded nanoparticles. Curr Pharm Des. 2015;21(40):5829–44.

    Article  Google Scholar 

  142. Crowe JH, Hoekstra FA, Crowe LM. Anhydrobiosis. Annu Rev Physiol. 1992;54(1):579–99.

    Article  CAS  Google Scholar 

  143. Constantino H, Andya J, Nguyen P, Dasovich N, Crowe J, Carpenter J, et al. The role of vitrification in anhydrobiosis. Annu Rev Physiol. 1998;60:73–103.

    Article  Google Scholar 

  144. Pohlmann AR, Weiss V, Mertins O, da Silveira NP, Guterres SlS. Spray-dried indomethacin-loaded polyester nanocapsules and nanospheres: development, stability evaluation and nanostructure models. European Journal of Pharmaceutical Sciences. 2002;16(4–5):305–12.

  145. Fonte P, Reis S, Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Control Release. 2016;225:75–86.

    Article  CAS  Google Scholar 

  146. Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev. 2006;58(15):1688–713.

    Article  CAS  Google Scholar 

  147. Abdelwahed W, Degobert G, Fessi H. Investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage. Eur J Pharm Biopharm. 2006;63(2):87–94.

    Article  CAS  Google Scholar 

  148. Bejrapha P, Min S-G, Surassmo S, Choi M-J. Physicothermal properties of freeze-dried fish oil nanocapsules frozen under different conditions. Drying Technol. 2010;28(4):481–9.

    Article  CAS  Google Scholar 

  149. Bexiga NM, Bloise A, Alencar AM, Stephano MA. Freeze-drying of ovalbumin-loaded carboxymethyl chitosan nanocapsules: impact of freezing and annealing procedures on physicochemical properties of the formulation during dried storage. Drying Technol. 2018;36(4):400–17.

    Article  CAS  Google Scholar 

  150. Oyarzun-Ampuero FA, Rivera-Rodríguez GR, Alonso MJ, Torres D. Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery. Eur J Pharm Sci. 2013;49(4):483–90.

    Article  CAS  Google Scholar 

  151. Khayata N, Abdelwahed W, Chehna M, Charcosset C, Fessi H. Stability study and lyophilization of vitamin E-loaded nanocapsules prepared by membrane contactor. Int J Pharm. 2012;439(1–2):254–9.

    Article  CAS  Google Scholar 

  152. Khosa A, Singhvi G, Saha RN, Gupta G. Drug delivery to the CNS. Panminerva Med. 2018;60(4):226.

    Article  Google Scholar 

  153. Bernacki J, Dobrowolska A, Nierwiñska K, Malecki A. Physiology and pharmacological role of the blood-brain barrier. Pharmacol Rep. 2008;60(5):600–22.

    CAS  Google Scholar 

  154. Aparicio-Blanco J, Romero IA, Male DK, Slowing K, García-García L, Torres-Suarez AI. Cannabidiol enhances the passage of lipid nanocapsules across the blood–brain barrier both in vitro and in vivo. Mol Pharm. 2019;16(5):1999–2010.

    Article  CAS  Google Scholar 

  155. Moura RP, Pacheco C, Pêgo AP, des Rieux A, Sarmento B. Lipid nanocapsules to enhance drug bioavailability to the central nervous system. Journal of Controlled Release. 2020;322:390–400.

  156. Chekhonin VP, Baklaushev VP, Yusubalieva GM, Belorusova AE, Gulyaev MV, Tsitrin EB, et al. Targeted delivery of liposomal nanocontainers to the peritumoral zone of glioma by means of monoclonal antibodies against GFAP and the extracellular loop of Cx43. Nanomedicine: Nanotechnology, Biology and Medicine. 2012;8(1):63–70.

  157. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter J. Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res. 1999;16(10):1564–9.

    Article  CAS  Google Scholar 

  158. Brunner J, Ragupathy S, Borchard G. Target specific tight junction modulators. Adv Drug Deliv Rev. 2021;171:266–88.

    Article  CAS  Google Scholar 

  159. Torge A, Wagner S, Chaves PS, Oliveira EG, Guterres SS, Pohlmann AR, et al. Ciprofloxacin-loaded lipid-core nanocapsules as mucus penetrating drug delivery system intended for the treatment of bacterial infections in cystic fibrosis. Int J Pharm. 2017;527(1–2):92–102.

    Article  CAS  Google Scholar 

  160. Chen H, Mansfield ED, Woods A, Khutoryanskiy VV, Forbes B, Jones SA. Mucus penetrating properties of soft, distensible lipid nanocapsules. Eur J Pharm Biopharm. 2019;139:76–84.

    Article  CAS  Google Scholar 

  161. Robla S, Alonso MJ, Csaba NS. Polyaminoacid-based nanocarriers: a review of the latest candidates for oral drug delivery. Expert Opin Drug Deliv. 2020;17(8):1081–92.

    Article  CAS  Google Scholar 

  162. Wang T, Luo Y. Biological fate of ingested lipid-based nanoparticles: current understanding and future directions. Nanoscale. 2019;11(23):11048–63.

    Article  CAS  Google Scholar 

  163. Dintaman JM, Silverman JA. Inhibition of P-glycoprotein by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res. 1999;16(10):1550–6.

    Article  CAS  Google Scholar 

  164. Goole J, Lindley DJ, Roth W, Carl SM, Amighi K, Kauffmann J-M, et al. The effects of excipients on transporter mediated absorption. Int J Pharm. 2010;393(1–2):17–31.

    Article  CAS  Google Scholar 

  165. Gonzalez-Paredes A, Torres D, Alonso MJ. Polyarginine nanocapsules: a versatile nanocarrier with potential in transmucosal drug delivery. Int J Pharm. 2017;529(1–2):474–85.

    Article  CAS  Google Scholar 

  166. Renukuntla J, Vadlapudi AD, Patel A, Boddu SH, Mitra AK. Approaches for enhancing oral bioavailability of peptides and proteins. Int J Pharm. 2013;447(1–2):75–93.

    Article  CAS  Google Scholar 

  167. Sala M, Diab R, Elaissari A, Fessi H. Lipid nanocarriers as skin drug delivery systems: properties, mechanisms of skin interactions and medical applications. Int J Pharm. 2018;535(1–2):1–17.

    Article  CAS  Google Scholar 

  168. Waghule T, Rapalli VK, Gorantla S, Saha RN, Dubey SK, Puri A, et al. Nanostructured lipid carriers as potential drug delivery systems for skin disorders. Curr Pharm Des. 2020;26(36):4569–79.

    Article  CAS  Google Scholar 

  169. Friedrich RB, Kann B, Coradini K, Offerhaus HL, Beck RC, Windbergs M. Skin penetration behavior of lipid-core nanocapsules for simultaneous delivery of resveratrol and curcumin. Eur J Pharm Sci. 2015;78:204–13.

    Article  CAS  Google Scholar 

  170. Zhai Y, Zhai G. Advances in lipid-based colloid systems as drug carrier for topic delivery. J Control Release. 2014;193:90–9.

    Article  CAS  Google Scholar 

  171. Khattab WM, Zein El-Dein EE, El-Gizawy SA. Formulation of lyophilized oily-core poly-E-caprolactone nanocapsules to improve oral bioavailability of Olmesartan Medoxomil. Drug Dev Ind Pharm. 2020;46(5):795–805. https://doi.org/10.1080/03639045.2020.1753763.

    Article  CAS  Google Scholar 

  172. Maji I, Mahajan S, Sriram A, Medtiya P, Vasave R, Khatri DK, et al. Solid self emulsifying drug delivery system: superior mode for oral delivery of hydrophobic cargos. J Control Release. 2021;337:646–60.

    Article  CAS  Google Scholar 

  173. Gao M, Long X, Du J, Teng M, Zhang W, Wang Y, et al. Enhanced curcumin solubility and antibacterial activity by encapsulation in PLGA oily core nanocapsules. Food Funct. 2020;11(1):448–55. https://doi.org/10.1039/c9fo00901a.

    Article  CAS  Google Scholar 

  174. Nassar T, Rom A, Nyska A, Benita S. Novel double coated nanocapsules for intestinal delivery and enhanced oral bioavailability of tacrolimus, a P-gp substrate drug. J Control Release. 2009;133(1):77–84. https://doi.org/10.1016/j.jconrel.2008.08.021.

    Article  CAS  Google Scholar 

  175. Giacomeli R, Izoton JC, Dos Santos RB, Boeira SP, Jesse CR, Haas SE. Neuroprotective effects of curcumin lipid-core nanocapsules in a model Alzheimer’s disease induced by β-amyloid 1-42 peptide in aged female mice. Brain Res. 2019; 1721:146325. https://doi.org/10.1016/j.brainres.2019.146325.

  176. Giacomeli R, de Gomes MG, Reolon JB, Haas SE, Colome LM, Jesse CR. Chrysin loaded lipid-core nanocapsules ameliorates neurobehavioral alterations induced by beta-amyloid1–42 in aged female mice. Behav Brain Res. 2020;390:112696. doi: https://doi.org/10.1016/j.bbr.2020.112696.

  177. Peltier S, Oger JM, Lagarce F, Couet W, Benoit JP. Enhanced oral paclitaxel bioavailability after administration of paclitaxel-loaded lipid nanocapsules. Pharm Res. 2006;23(6):1243–50. https://doi.org/10.1007/s11095-006-0022-2.

    Article  CAS  Google Scholar 

  178. Ashour AA, Ramadan AA, Abdelmonsif DA, El-Kamel AH. Enhanced oral bioavailability of Tanshinone IIA using lipid nanocapsules: formulation, in-vitro appraisal and pharmacokinetics. Int J Pharm. 2020;586:119598. doi: https://doi.org/10.1016/j.ijpharm.2020.119598.

  179. Roger E, Lagarce F, Benoit JP. Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration. Eur J Pharm Biopharm. 2011;79(1):181–8. https://doi.org/10.1016/j.ejpb.2011.01.021.

    Article  CAS  Google Scholar 

  180. Ramadan A, Lagarce F, Tessier-Marteau A, Thomas O, Legras P, Macchi L, et al. Oral fondaparinux: use of lipid nanocapsules as nanocarriers and in vivo pharmacokinetic study. Int J Nanomedicine. 2011;6:2941–51. https://doi.org/10.2147/IJN.S25791.

    Article  CAS  Google Scholar 

  181. Xavier-Jr FH, Gueutin C, Chacun H, Vauthier C, Egito EST. Mucoadhesive paclitaxel-loaded chitosan-poly (isobutyl cyanoacrylate) core-shell nanocapsules containing copaiba oil designed for oral drug delivery. Journal of Drug Delivery Science and Technology. 2019;53. doi: https://doi.org/10.1016/j.jddst.2019.101194.

  182. Xia N, Liu T, Wang Q, Xia Q, Bian X. in vitro evaluation of alpha-lipoic acid-loaded lipid nanocapsules for topical delivery. J Microencapsul. 2017;34(6):571–81. https://doi.org/10.1080/02652048.2017.1367852.

    Article  CAS  Google Scholar 

  183. Marchiori ML, Lubini G, Dalla Nora G, Friedrich RB, Fontana MC, Ourique AF, et al. Hydrogel containing dexamethasone-loaded nanocapsules for cutaneous administration: preparation, characterization, and in vitro drug release study. Drug Dev Ind Pharm. 2010;36(8):962–71. https://doi.org/10.3109/03639041003598960.

    Article  CAS  Google Scholar 

  184. Simon L, Lapinte V, Lionnard L, Marcotte N, Morille M, Aouacheria A, et al. Polyoxazolines based lipid nanocapsules for topical delivery of antioxidants. Int J Pharm. 2020;579:119126. doi: https://doi.org/10.1016/j.ijpharm.2020.119126.

  185. Contri RV, Katzer T, Pohlmann AR, Guterres SS. Chitosan hydrogel containing capsaicinoids-loaded nanocapsules: an innovative formulation for topical delivery. Soft Mater. 2010;8(4):370–85. https://doi.org/10.1080/1539445x.2010.525161.

    Article  CAS  Google Scholar 

  186. Varshosaz J, Hajhashemi V, Soltanzadeh S. Lipid nanocapsule-based gels for enhancement of transdermal delivery of ketorolac tromethamine. J Drug Deliv. 2011;2011:571272. doi: https://doi.org/10.1155/2011/571272.

  187. da Silva AL, Contri RV, Jornada DS, Pohlmann AR, Guterres SS. Vitamin K1-loaded lipid-core nanocapsules: physicochemical characterization and in vitro skin permeation. Skin Res Technol. 2013;19(1):e223–30. https://doi.org/10.1111/j.1600-0846.2012.00631.x.

    Article  Google Scholar 

  188. El-Sheridy NA, Ramadan AA, Eid AA, El-Khordagui LK. Itraconazole lipid nanocapsules gel for dermatological applications: in vitro characteristics and treatment of induced cutaneous candidiasis. Colloids Surf B Biointerfaces. 2019;181:623–31. https://doi.org/10.1016/j.colsurfb.2019.05.057.

    Article  CAS  Google Scholar 

  189. Clavreul A, Roger E, Pourbaghi-Masouleh M, Lemaire L, Tetaud C, Menei P. Development and characterization of sorafenib-loaded lipid nanocapsules for the treatment of glioblastoma. Drug Deliv. 2018;25(1):1756–65. https://doi.org/10.1080/10717544.2018.1507061.

    Article  CAS  Google Scholar 

  190. Katiyar SS, Ghadi R, Kushwah V, Dora CP, Jain S. Lipid and biosurfactant based core-shell-type nanocapsules having high drug loading of paclitaxel for improved breast cancer therapy. ACS Biomater Sci Eng. 2020;6:6760–9. https://doi.org/10.1021/acsbiomaterials.0c01290.

    Article  CAS  Google Scholar 

  191. Katiyar SS, Patil R, Ghadi R, Kuche K, Kushwah V, Dora CP, et al. Lipid-and TPGS-based core–shell-type nanocapsules endowed with high paclitaxel loading and enhanced anticancer potential. AAPS PharmSciTech. 2022;23(238):238.

    Article  CAS  Google Scholar 

  192. Zafar S, Akhter S, Garg N, Selvapandiyan A, Kumar Jain G, Ahmad FJ. Co-encapsulation of docetaxel and thymoquinone in mPEG-DSPE-vitamin E TPGS-lipid nanocapsules for breast cancer therapy: formulation optimization and implications on cellular and in vivo toxicity. Eur J Pharm Biopharm. 2020;148:10–26. https://doi.org/10.1016/j.ejpb.2019.12.016.

    Article  CAS  Google Scholar 

  193. Zhai Q, Li H, Song Y, Wu R, Tang C, Ma X, et al. Preparation and optimization lipid nanocapsules to enhance the antitumor efficacy of cisplatin in hepatocellular carcinoma HepG2 cells. AAPS PharmSciTech. 2018;19(5):2048–57. https://doi.org/10.1208/s12249-018-1011-6.

    Article  CAS  Google Scholar 

  194. Abdel-Mottaleb MM, Neumann D, Lamprecht A. Lipid nanocapsules for dermal application: a comparative study of lipid-based versus polymer-based nanocarriers. Eur J Pharm Biopharm. 2011;79(1):36–42. https://doi.org/10.1016/j.ejpb.2011.04.009.

    Article  CAS  Google Scholar 

  195. Zhai Y, Yang X, Zhao L, Wang Z, Zhai G. Lipid nanocapsules for transdermal delivery of ropivacaine: in vitro and in vivo evaluation. Int J Pharm. 2014;471:103–11. https://doi.org/10.1016/j.ijpharm.2014.05.035.

    Article  CAS  Google Scholar 

  196. Yingngam B, Chiangsom A, Pharikarn P, Vonganakasame K, Kanoknitthiran V, Rungseevijitprapa W, et al. Optimization of menthol-loaded nanocapsules for skin application using the response surface methodology. Journal of Drug Delivery Science and Technology. 2019;53. doi: https://doi.org/10.1016/j.jddst.2019.101138.

  197. Katiyar SS, Kushwah V, Dora CP, Jain S. Novel biosurfactant and lipid core-shell type nanocapsular sustained release system for intravenous application of methotrexate. Int J Pharm. 2019;557:86–96. https://doi.org/10.1016/j.ijpharm.2018.12.043.

    Article  CAS  Google Scholar 

  198. Ourique AF, Azoubel S, Ferreira CV, Silva CB, Marchiori MC, Pohlmann AR, et al. Lipid-core nanocapsules as a nanomedicine for parenteral administration of tretinoin: development and in vitro antitumor activity on human myeloid leukaemia cells. J Biomed Nanotechnol. 2010;6(3):214–23. https://doi.org/10.1166/jbn.2010.1120.

    Article  CAS  Google Scholar 

  199. Hoarau D, Delmas P, David S, Roux E, Leroux J-C. Novel long-circulating lipid nanocapsules. Pharm Res. 2004;21(10):1783–9.

    Article  CAS  Google Scholar 

  200. Bruinsmann FA, Alves AdCS, de Fraga Dias A, Silva LFL, Visioli F, Pohlmann AR, et al. Nose-to-brain delivery of simvastatin mediated by chitosan-coated lipid-core nanocapsules allows for the treatment of glioblastoma in vivo. International Journal of Pharmaceutics. 2022;616:121563.

  201. Gieszinger P, Stefania Csaba N, Garcia-Fuentes M, Prasanna M, Gaspar R, Sztojkov-Ivanov A, et al. Preparation and characterization of lamotrigine containing nanocapsules for nasal administration. Eur J Pharm Biopharm. 2020;153:177–86. https://doi.org/10.1016/j.ejpb.2020.06.003.

    Article  CAS  Google Scholar 

  202. Bseiso EA, AbdEl-Aal SA, Nasr M, Sammour OA, El Gawad NAA. Nose to brain delivery of melatonin lipidic nanocapsules as a promising post-ischemic neuroprotective therapeutic modality. Drug Deliv. 2022;29(1):2469–80. https://doi.org/10.1080/10717544.2022.2104405.

    Article  CAS  Google Scholar 

  203. Katzer T, Chaves P, Bernardi A, Pohlmann A, Guterres SS, Ruver Beck RC. Prednisolone-loaded nanocapsules as ocular drug delivery system: development, in vitro drug release and eye toxicity. J Microencapsul. 2014;31(6):519–28. https://doi.org/10.3109/02652048.2013.879930.

    Article  CAS  Google Scholar 

  204. Sun R, Zhang A, Ge Y, Gou J, Yin T, He H, et al. Ultra-small-size Astragaloside-IV loaded lipid nanocapsules eye drops for the effective management of dry age-related macular degeneration. Expert Opin Drug Deliv. 2020;17(9):1305–20. https://doi.org/10.1080/17425247.2020.1783236.

    Article  CAS  Google Scholar 

  205. Calvo P, Sánchez A, Martínez J, López MI, Calonge M, Pastor JC, et al. Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharm Res. 1996;13(2):311–5.

    Article  CAS  Google Scholar 

  206. Urimi D, Widenbring R, Perez Garcia RO, Gedda L, Edwards K, Loftsson T, et al. Formulation development and upscaling of lipid nanocapsules as a drug delivery system for a novel cyclic GMP analogue intended for retinal drug delivery. Int J Pharm. 2021;602:120640. doi: https://doi.org/10.1016/j.ijpharm.2021.120640.

  207. Bazylinska U, Zielinski W, Kulbacka J, Samoc M, Wilk KA. New diamidequat-type surfactants in fabrication of long-sustained theranostic nanocapsules: Colloidal stability, drug delivery and bioimaging. Colloids Surf B Biointerfaces. 2016;137:121–32. https://doi.org/10.1016/j.colsurfb.2015.06.043.

    Article  CAS  Google Scholar 

  208. Kamalapuram SK, Kanwar RK, Roy K, Chaudhary R, Sehgal R, Kanwar JR. Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers. Int J Nanomedicine. 2016;11:1349–66. https://doi.org/10.2147/IJN.S95253.

    Article  CAS  Google Scholar 

  209. Zhang Y, Garcia-Gabilondo M, Rosell A, Roig A. MRI/Photoluminescence dual-modal imaging magnetic PLGA nanocapsules for theranostics. Pharmaceutics. 2019;12(1). doi: https://doi.org/10.3390/pharmaceutics12010016.

  210. Laine AL, Huynh NT, Clavreul A, Balzeau J, Bejaud J, Vessieres A, et al. Brain tumour targeting strategies via coated ferrociphenol lipid nanocapsules. Eur J Pharm Biopharm. 2012;81(3):690–3. https://doi.org/10.1016/j.ejpb.2012.04.012.

    Article  CAS  Google Scholar 

  211. Formica ML, Ullio Gamboa GV, Tartara LI, Luna JD, Benoit JP, Palma SD. Triamcinolone acetonide-loaded lipid nanocapsules for ophthalmic applications. Int J Pharm. 2020;573:118795. doi: https://doi.org/10.1016/j.ijpharm.2019.118795.

  212. Zou J, Saulnier P, Perrier T, Zhang Y, Manninen T, Toppila E, et al. Distribution of lipid nanocapsules in different cochlear cell populations after round window membrane permeation. J Biomed Mater Res B Appl Biomater. 2008;87(1):10–8. https://doi.org/10.1002/jbm.b.31058.

    Article  CAS  Google Scholar 

  213. Liu H, Hao J, Li KS. Current strategies for drug delivery to the inner ear. Acta Pharmaceutica Sinica B. 2013;3(2):86–96. https://doi.org/10.1016/j.apsb.2013.02.003.

    Article  Google Scholar 

  214. Zhang Y, Zhang W, Lobler M, Schmitz KP, Saulnier P, Perrier T, et al. Inner ear biocompatibility of lipid nanocapsules after round window membrane application. Int J Pharm. 2011;404(1–2):211–9. https://doi.org/10.1016/j.ijpharm.2010.11.006.

    Article  CAS  Google Scholar 

  215. Resnier P, LeQuinio P, Lautram N, Andre E, Gaillard C, Bastiat G, et al. Efficient in vitro gene therapy with PEG siRNA lipid nanocapsules for passive targeting strategy in melanoma. Biotechnol J. 2014;9(11):1389–401. https://doi.org/10.1002/biot.201400162.

    Article  CAS  Google Scholar 

  216. Le Moal B, Lepeltier E, Rouleau D, Le Visage C, Benoit JP, Passirani C, et al. Lipid nanocapsules for intracellular delivery of microRNA: a first step towards intervertebral disc degeneration therapy. Int J Pharm. 2022;624:121941. doi: https://doi.org/10.1016/j.ijpharm.2022.121941.

  217. Morille M, Montier T, Legras P, Carmoy N, Brodin P, Pitard B, et al. Long-circulating DNA lipid nanocapsules as new vector for passive tumor targeting. Biomaterials. 2010;31(2):321–9. https://doi.org/10.1016/j.biomaterials.2009.09.044.

    Article  CAS  Google Scholar 

  218. Tewabe A, Abate A, Tamrie M, Seyfu A, Abdela SE. Targeted drug delivery - from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Healthc. 2021;14:1711–24. https://doi.org/10.2147/JMDH.S313968.

    Article  Google Scholar 

  219. El-Gogary RI, et al. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS nano, 2014.8(2): p. 1384-1401.

  220. Kshirsagar SJ, Bhalekar MR, Patel JN, Mohapatra SK, Shewale NS. Preparation and characterization of nanocapsules for colon-targeted drug delivery system. Pharm Dev Technol. 2012;17(5):607–13. https://doi.org/10.3109/10837450.2011.557732.

    Article  CAS  Google Scholar 

  221. Ushirobira CY, Afiune LAF, Pereira MN, Cunha-Filho M, Gelfuso GM, Gratieri T. Dutasteride nanocapsules for hair follicle targeting: effect of chitosan-coating and physical stimulus. Int J Biol Macromol. 2020;151:56–61. https://doi.org/10.1016/j.ijbiomac.2020.02.143.

    Article  CAS  Google Scholar 

  222. Oyarzun-Ampuero FA, Rivera-Rodriguez GR, Alonso MJ, Torres D. Hyaluronan nanocapsules as a new vehicle for intracellular drug delivery. Eur J Pharm Sci. 2013;49(4):483–90. https://doi.org/10.1016/j.ejps.2013.05.008.

    Article  CAS  Google Scholar 

  223. Carradori D, Saulnier P, Preat V, des Rieux A, Eyer J. NFL-lipid nanocapsules for brain neural stem cell targeting in vitro and in vivo. J Control Release. 2016;238:253–62. doi: https://doi.org/10.1016/j.jconrel.2016.08.006.

  224. Sehedic D, Roncali L, Djoudi A, Buchtova N, Avril S, Cherel M, et al. Rapamycin-loaded lipid nanocapsules induce selective inhibition of the mTORC1-signaling pathway in glioblastoma cells. Front Bioeng Biotechnol. 2020;8:602998. doi: https://doi.org/10.3389/fbioe.2020.602998.

  225. Khanal M, Barras A, Vausselin T, Feneant L, Boukherroub R, Siriwardena A, et al. Boronic acid-modified lipid nanocapsules: a novel platform for the highly efficient inhibition of hepatitis C viral entry. Nanoscale. 2015;7(4):1392–402. https://doi.org/10.1039/c4nr03875d.

    Article  CAS  Google Scholar 

  226. Navarro-Marchal SA, Grinan-Lison C, Entrena JM, Ruiz-Alcala G, Tristan-Manzano M, Martin F, et al. Anti-CD44-conjugated olive oil liquid nanocapsules for targeting pancreatic cancer stem cells. Biomacromol. 2021;22(4):1374–88. https://doi.org/10.1021/acs.biomac.0c01546.

    Article  CAS  Google Scholar 

  227. Boissenot T, Fattal E, Bordat A, Houvenagel S, Valette J, Chacun H, et al. Paclitaxel-loaded PEGylated nanocapsules of perfluorooctyl bromide as theranostic agents. Eur J Pharm Biopharm. 2016;108:136–44. https://doi.org/10.1016/j.ejpb.2016.08.017.

    Article  CAS  Google Scholar 

  228. Savliwala S, Chiu-Lam A, Unni M, Rivera-Rodriguez A, Fuller E, Sen K, et al. Magnetic nanoparticles. Nanoparticles for biomedical applications. Elsevier; 2020. p. 195–221.

  229. Nandwana V, Singh A, You MM, Zhang G, Higham J, Zheng TS, et al. Magnetic lipid nanocapsules (MLNCs): self-assembled lipid-based nanoconstruct for non-invasive theranostic applications. J Mater Chem B. 2018;6(7):1026–34. https://doi.org/10.1039/c7tb03160b.

    Article  CAS  Google Scholar 

  230. Liao J, Wei X, Ran B, Peng J, Qu Y, Qian Z. Polymer hybrid magnetic nanocapsules encapsulating IR820 and PTX for external magnetic field-guided tumor targeting and multifunctional theranostics. Nanoscale. 2017;9(7):2479–91. https://doi.org/10.1039/c7nr00033b.

    Article  CAS  Google Scholar 

  231. Lohani A, Verma A, Joshi H, Yadav N, Karki N. Nanotechnology-based cosmeceuticals. ISRN. Dermatology. 2014;2014:1–14. https://doi.org/10.1155/2014/843687.

    Article  CAS  Google Scholar 

  232. Nguyen TA, Rajendran S. Current commercial nanocosmetic products. Nanocosmetics. 2020. p. 445–53.

Download references

Author information

Authors and Affiliations

Authors

Contributions

Arti Mehandole, Nikita Walke: literature survey and writing, draft preparation of the manuscript. Srushti Mahajan, Mayur Aalhate: writing draft, review, draft finalization. Indrani Maji, Ujala Gupta: review, proof check. Neelesh Kumar Mehra, Pankaj Kumar Singh: reviewing, draft finalization, and editing.

Corresponding author

Correspondence to Pankaj Kumar Singh.

Ethics declarations

Ethical Statement

The authors declare that no animal studies were performed during the preparation of this manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehandole, A., Walke, N., Mahajan, S. et al. Core–Shell Type Lipidic and Polymeric Nanocapsules: the Transformative Multifaceted Delivery Systems. AAPS PharmSciTech 24, 50 (2023). https://doi.org/10.1208/s12249-023-02504-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02504-z

Keywords

Navigation