Skip to main content
Log in

Alpha Tocopherol Loaded Polymeric Nanoparticles: Preparation, Characterizations, and In Vitro Assessments Against Oxidative Stress in Spinal Cord Injury Treatment

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is characterized by mechanical injury or trauma to the spinal cord. Currently, SCI treatment requires extremely high doses of neuroprotective agents, which in turn, causes several adverse effects. To overcome these limitations, the present study focuses on delivery of a low but effective dose of a naturally occurring antioxidant, α-tocopherol (α-TP). Calcium alginate nanoparticles (CA-NP) and poly d,l-lactic-co-glycolic acid nanoparticles (PLGA-NP) prepared by ionotropic gelation and solvent evaporation technique had particle size of 21.9 ± 11.19 and 152.4 ± 10.6 nm, respectively. Surface morphology, surface charge, as well as particle size distribution of both nanoparticles were evaluated. Entrapment of α-TP into CA-NP and PLGA-NP quantified by UPLC showed entrapment efficiency of 4.00 ± 1.63% and 76.6 ± 11.4%, respectively. In vitro cytotoxicity profiles on human astrocyte-spinal cord (HA-sp) showed that blank CA-NP at high concentrations reduced the cell viability whereas blank PLGA-NP showed relatively safer cytotoxic profiles. In addition, PLGA nanoparticles encapsulated with α-TP (α-TP-PLGA-NP) in comparison to α-TP alone at high concentrations were less toxic. Pretreatment of HA-sp cells with α-TP-PLGA-NP showed two-fold higher anti-oxidative protection as compared to α-TP alone, when oxidative stress was induced by H2O2. In conclusion, CA-NP were found to be unsuitable for treatment of SCI due to their cytotoxicity. Comparatively, α-TP-PLGA-NP were safer and showed high degree of protection against oxidative stress than α-TP alone.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. WHO. Spinal cord injury. 2013 [Available from: https://www.who.int/news-room/fact-sheets/detail/spinal-cordinjury. Accessed 27 June 2019.

  2. Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus. 2008;25(5):E2.

    Article  PubMed  Google Scholar 

  3. Norenberg MD, Smith J, Marcillo A. The pathology of human spinal cord injury: defining the problems. J Neurotrauma. 2004;21(4):429–40.

    Article  PubMed  Google Scholar 

  4. Whetstone WD, Hsu JY, Eisenberg M, Werb Z, Noble-Haeusslein LJ. Blood-spinal cord barrier after spinal cord injury: relation to revascularization and wound healing. J Neurosci Res. 2003;74(2):227–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thornton C, Baburamani AA, Kichev A, Hagberg H. Oxidative stress and endoplasmic reticulum (ER) stress in the development of neonatal hypoxic-ischaemic brain injury. Biochem Soc Trans. 2017;45(5):1067–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim YH, Ha KY, Kim SI. Spinal cord injury and related clinical trials. Clin Orthop Surg. 2017;9(1):1–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W, Baskin DS, et al. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury Study. N Engl J Med. 1990;322(20):1405–11.

    Article  CAS  PubMed  Google Scholar 

  8. Coleman WP, Benzel E, Cahill DW, Ducker T, Geisler F, Green B, et al. A critical appraisal of the reporting of the National Acute Spinal Cord Injury Studies (II and III) of methylprednisolone in acute spinal cord injury. Clinical Spine Surgery. 2000;13(3):185–99.

    CAS  Google Scholar 

  9. Hosseini M, Sarveazad A, Babahajian A, Baikpour M, Vaccaro AR, Chapman JR, et al. Effect of vitamins C and E on recovery of motor function after spinal cord injury: systematic review and meta-analysis of animal studies. Nutr Rev. 2020;78(6):465–73.

    Article  PubMed  Google Scholar 

  10. Al Jadid MS, Robert A, Al-Mubarak S. The efficacy of alpha-tocopherol in functional recovery of spinal cord injured rats: an experimental study. Spinal Cord. 2009;47(9):662–7.

    Article  CAS  PubMed  Google Scholar 

  11. Morsy MD, Mostafa OA, Hassan WN. A potential protective effect of alpha-tocopherol on vascular complication in spinal cord reperfusion injury in rats. J Biomed Sci. 2010;17:55.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Evans HM, Bishop KS. On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science. 1922;56(1458):650–1.

    Article  CAS  PubMed  Google Scholar 

  13. Brigelius-Flohé R, Traber MG. Vitamin E: function and metabolism. Faseb j. 1999;13(10):1145–55.

    Article  PubMed  Google Scholar 

  14. Peker S, Abacioglu U, Sun I, Konya D, Yuksel M, Pamir NM. Prophylactic effects of magnesium and vitamin E in rat spinal cord radiation damage: evaluation based on lipid peroxidation levels. Life Sci. 2004;75(12):1523–30.

    Article  CAS  PubMed  Google Scholar 

  15. Smuder AJ, Gonzalez-Rothi EJ, Kwon OS, Morton AB, Sollanek KJ, Powers SK, et al. Cervical spinal cord injury exacerbates ventilator-induced diaphragm dysfunction. J Appl Physiol (1985). 2016;120(2):166–77.

    Article  CAS  Google Scholar 

  16. Goh CH, Heng PWS, Chan LW. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohyd Polym. 2012;88(1):1–12.

    Article  CAS  Google Scholar 

  17. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  18. Grijalvo S, Nieto-Diaz M, Maza RM, Eritja R, Diaz DD. Alginate hydrogels as scaffolds and delivery systems to repair the damaged spinal cord. Biotechnol J. 2019;14(12): e1900275.

    Article  PubMed  Google Scholar 

  19. Sitoci-Ficici KH, Matyash M, Uckermann O, Galli R, Leipnitz E, Later R, et al. Non-functionalized soft alginate hydrogel promotes locomotor recovery after spinal cord injury in a rat hemimyelonectomy model. Acta Neurochir (Wien). 2018;160(3):449–57.

    Article  Google Scholar 

  20. Schackel T, Kumar P, Gunther M, Liu S, Brunner M, Sandner B, et al. Peptides and astroglia improve the regenerative capacity of alginate gels in the injured spinal cord. Tissue Eng Part A. 2019;25(7–8):522–37.

    Article  CAS  PubMed  Google Scholar 

  21. Lu L, Peter SJ, Lyman MD, Lai H-L, Leite SM, Tamada JA, et al. In vitro and in vivo degradation of porous poly (DL-lactic-co-glycolic acid) foams. Biomaterials. 2000;21(18):1837–45.

    Article  CAS  PubMed  Google Scholar 

  22. Azizi M, Farahmandghavi F, Joghataei MT, Zandi M, Imani M, Bakhtiari M, et al. ChABC-loaded PLGA nanoparticles: a comprehensive study on biocompatibility, functional recovery, and axonal regeneration in animal model of spinal cord injury. Int J Pharm. 2020;577: 119037.

    Article  CAS  PubMed  Google Scholar 

  23. Gao SJ, Liu Y, Wang HJ, Ban DX, Cheng SZ, Ning GZ, et al. New approach to treating spinal cord injury using PEG-TAT-modified, cyclosporine-A-loaded PLGA/polymeric liposomes. J Drug Target. 2017;25(1):75–82.

    Article  CAS  PubMed  Google Scholar 

  24. Saralkar P, Dash AK. Alginate nanoparticles containing curcumin and resveratrol: preparation, characterization, and in vitro evaluation against DU145 prostate cancer cell line. AAPS PharmSciTech. 2017;18(7):2814–23.

    Article  CAS  PubMed  Google Scholar 

  25. USP < 1225> Validation of compendial procedures. Available from http://www.uspbpep.com/usp29/v29240/usp29nf24s0_c1225.html. Accessed 4 July 2022.

  26. Soares J, Santos J, Chierice G, Cavalheiro E. Thermal behavior of alginic acid and its sodium salt. Eclética Química. 2004;29:57–64.

    Article  CAS  Google Scholar 

  27. Hausberger AG, DeLuca pp. Characterization of biodegradable poly(d, l-lactide-co-glycolide) polymers and microspheres. J Pharm Biomed Anal. 1995;13(6):747–60.

    Article  CAS  PubMed  Google Scholar 

  28. Nakamura K, Nishimura Y, Hatakeyama T, Hatakeyama H. Thermal properties of water insoluble alginate films containing di- and trivalent cations. Thermochim Acta. 1995;267:343–53.

    Article  CAS  Google Scholar 

  29. Daemi H, Barikani M. Synthesis and characterization of calcium alginate nanoparticles, sodium homopolymannuronate salt and its calcium nanoparticles. Scientia Iranica. 2012;19(6):2023–8.

    Article  CAS  Google Scholar 

  30. Mansur HS, Oréfice RL, Mansur AAP. Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer. 2004;45(21):7193–202.

    Article  CAS  Google Scholar 

  31. Singh G, Kaur T, Kaur R, Kaur A. Recent biomedical applications and patents on biodegradable polymer-PLGA. Int J Pharmacol Pharm Sci. 2014;1(2):30–42.

    CAS  Google Scholar 

  32. Altindal DC, Gumusderelioglu M. Melatonin releasing PLGA micro/nanoparticles and their effect on osteosarcoma cells. J Microencapsul. 2016;33(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  33. Khan TI, Hemalatha S, Waseem M. Promising role of nano-encapsulated drugs for spinal cord injury. Mol Neurobiol. 2020;57(4):1978–85.

    Article  CAS  PubMed  Google Scholar 

  34. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012;37(1):106–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Makadia HK, Siegel SJ. Poly Lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.

    Article  CAS  Google Scholar 

  36. Sukmawati A, Utami W, Yuliani R, Da’i M, Nafarin A, editors. Effect of Tween 80 on nanoparticle preparation of modified chitosan for targeted delivery of combination doxorubicin and curcumin analogue. IOP Conference Series: Materials Science and Engineering. 2018;311(1):012024. https://doi.org/10.1088/1757-899x/311/1/012024.

  37. Asasutjarit R, Sorrachaitawatwong C, Tipchuwong N, Pouthai S. Effect of formulation compositions on particle size and zeta potential of diclofenac sodium-loaded chitosan nanoparticles. International Journal of Pharmacological and Pharmaceutical Sciences. 2013;7(9):568–70.

    Google Scholar 

  38. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869–76.

    Article  CAS  PubMed  Google Scholar 

  39. Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther. 1999;81(3):163–221.

    Article  CAS  PubMed  Google Scholar 

  40. Huang W, Zhang C. Tuning the size of poly(lactic-co-glycolic acid) (PLGA) nanoparticles fabricated by nanoprecipitation. Biotechnol J. 2018; 13(1). https://doi.org/10.1002/biot.201700203.

  41. Birnbaum DT, Kosmala JD, Brannon-Peppas L. Optimization of preparation techniques for poly (lactic acid-co-glycolic acid) nanoparticles. J Nanopart Res. 2000;2(2):173–81.

    Article  CAS  Google Scholar 

  42. Astete CE, Sabliov CM. Synthesis and characterization of PLGA nanoparticles. J Biomater Sci Polym Ed. 2006;17(3):247–89.

    Article  CAS  PubMed  Google Scholar 

  43. Duchen MR. Roles of mitochondria in health and disease. Diabetes. 2004;53(Suppl 1):S96-102.

    Article  CAS  PubMed  Google Scholar 

  44. Daverey A, Agrawal SK. Pre and post treatment with curcumin and resveratrol protects astrocytes after oxidative stress. Brain Res. 2018;1692:45–55.

    Article  CAS  PubMed  Google Scholar 

  45. Daverey A, Agrawal SK. Curcumin alleviates oxidative stress and mitochondrial dysfunction in astrocytes. Neuroscience. 2016;333:92–103.

    Article  CAS  PubMed  Google Scholar 

  46. Anderson DK, Waters TR, Means ED. Pretreatment with alpha tocopherol enhances neurologic recovery after experimental spinal cord compression injury. J Neurotrauma. 1988;5(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  47. Cordero K, Coronel GG, Serrano-Illan M, Cruz-Bracero J, Figueroa JD, De Leon M. Effects of dietary vitamin E supplementation in bladder function and spasticity during spinal cord injury. Brain Sci. 2018;8(3). https://doi.org/10.3390/brainsci8030038.

  48. Nielsen P, Müllertz A, Norling T, Kristensen H. The effect of α-tocopherol on the in vitro solubilisation of lipophilic drugs. Int J Pharm. 2001;222(2):217–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Nebraska Medical Center Advanced Microscopy Core Facility for confocal microscopy images; Dr. Shah Valloppilly from University of Nebraska, Lincoln for assisting with X-ray diffraction studies; and College of Pharmacy, Xavier’s University of Louisiana for assistance with scanning electron microscopy.

Funding

This project was funded by the Department of Pharmacy Sciences at Creighton University (Omaha, NE).

Author information

Authors and Affiliations

Authors

Contributions

AL, AKD, and SKA designed the project. AL conducted the experiments, analyzed the results, and drafted the manuscript. AD performed the confocal microscopy experiments. AL, AKD, AD, and SKA contributed to the scientific discussion of the results. All authors reviewed the manuscript.

Corresponding author

Correspondence to Alekha K. Dash.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 514 KB).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laliwala, A., Daverey, A., Agrawal, S.K. et al. Alpha Tocopherol Loaded Polymeric Nanoparticles: Preparation, Characterizations, and In Vitro Assessments Against Oxidative Stress in Spinal Cord Injury Treatment. AAPS PharmSciTech 23, 195 (2022). https://doi.org/10.1208/s12249-022-02345-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02345-2

Keywords

Navigation