Skip to main content
Log in

Formulation and Characterization of Microcapsules Encapsulating PC12 Cells as a Prospective Treatment Approach for Parkinson’s Disease

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the second most common neurological disorder, associated with decreased dopamine levels in the brain. The goal of this study was to assess the potential of a regenerative medicine-based cell therapy approach to increase dopamine levels. In this study, we used rat adrenal pheochromocytoma (PC12) cells that can produce, store, and secrete dopamine. These cells were microencapsulated in the selectively permeable polymer membrane to protect them from immune responses. For fabrication of the microcapsules, we used a modified Buchi spray dryer B-190 that allows for fast manufacturing of microcapsules and is industrially scalable. Size optimization of the microcapsules was performed by systematically varying key parameters of the spraying device. The short- and long-term stabilities of the microcapsules were assessed. In the in vitro study, the cells were found viable for a period of 30 days. Selective permeability of the microcapsules was confirmed via dopamine release assay and micro BCA protein assay. We found that the microcapsules were permeable to the small molecules including dopamine and were impermeable to the large molecules like BSA. Thus, they can provide the protection to the encapsulated cells from the immune cells. Griess’s assay confirmed the non-immunogenicity of the microcapsules. These results demonstrate the effective fabrication of microcapsules encapsulating cells using an industrially scalable device. The microcapsules were stable, and the cells were viable inside the microcapsules and were found to release dopamine. Thus, these microcapsules have the potential to serve as the alternative or complementary treatment approach for PD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mandir AS, Vaughan C. Pathophysiology of Parkinson’s disease. Int Rev Psychiatry. 2000;12(4):270–80.

    Article  Google Scholar 

  2. Olanow CW. The scientific basis for the current treatment of Parkinson’s disease. Annu Rev Med. 2004;55(1):41–60.

    Article  CAS  Google Scholar 

  3. Gilmour H, Ramage-morin P, Ramage-morin PL. Parkinson’s disease: prevalence, diagnosis and impact. Health Reports Parkinson’s disease: Prevalence, diagnosis and impact. 2014;(November).

  4. Lew M. Overview of Parkinson ’ s disease. 2007;

    Google Scholar 

  5. Morgan J, Sethi KD. Levodopa and the progression of Parkinson’s disease. Curr Neurol Neurosci Rep. 2005;5(4):261–2.

    Article  Google Scholar 

  6. Tilley BC, Palesch YY, Kieburtz K, Ravina B, Huang P, Elm JJ, et al. Optimizing the ongoing search for new treatments for Parkinson disease: using futility designs. Neurology. 2006;66(5):628–33.

    Article  CAS  Google Scholar 

  7. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976;73(7):2424–8.

    Article  CAS  Google Scholar 

  8. Tischler AS, Perlman RL, Morse GM, Sheard BE. Glucocorticoids increase catecholamine synthesis and storage in PC 12 pheochromocytoma cell cultures. J Neurochem. 1983;40(2):364–70.

    Article  CAS  Google Scholar 

  9. Wu S, Ma C, Li G, Mai M, Wu Y. Intrathecal implantation of microencapsulated PC12 cells reduces cold allodynia in a rat model of neuropathic pain. Artif Organs. 2011;35(3):294–300.

    Article  CAS  Google Scholar 

  10. Date I, Shingo T, Yoshida H, Fujiwara K, Kobayashi K, Ohmoto T. Grafting of encapsulated dopamine-secreting cells in Parkinson’s disease: long-term primate study. Cell Transplant. 2000;9(5):705–9.

    Article  CAS  Google Scholar 

  11. Roberts T, De Boni U, Sefton MV. Dopamine secretion by PC12 cells microencapsulated in a hydroxyethyl methacrylate-methyl methacrylate copolymer. Biomaterials. 1996;17(3):267–75.

    Article  CAS  Google Scholar 

  12. Gasperini L, Mano JF, Reis RL. Natural polymers for the microencapsulation of cells. J R Soc Interface. 2014;11(100).

  13. Rokstad AM, Holtan S, Strand B, Steinkjer B, Ryan L, Kulseng B, et al. Microencapsulation of cells producing therapeutic proteins: optimizing cell growth and secretion. Cell Transplant. 2002;11(4):313–24.

    Article  Google Scholar 

  14. Tendulkar S, Mirmalek-Sani SH, Childers C, Saul J, Opara EC, Ramasubramanian MK. A three-dimensional microfluidic approach to scaling up microencapsulation of cells. Biomed Microdevices. 2012;14(3):461–9.

    Article  CAS  Google Scholar 

  15. Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. J Control Release [Internet] 2008;132(2):76–83. Available from: https://doi.org/10.1016/j.jconrel.2008.08.010

  16. Santos E, Zarate J, Orive G, Hernández RM, Pedraz JL. Biomaterials in cell microencapsulation. Adv Exp Med Biol. 2010;670:5–21.

    Article  CAS  Google Scholar 

  17. Gåserød O, Sannes A, Skjåk-Bræk G. Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability. Biomaterials. 1999;20(8):773–83.

    Article  Google Scholar 

  18. Gåserød O, Smidsrød O, Skjåk-Bræk G. Microcapsules of alginate-chitosan - I. A quantitative study of the interaction between alginate and chitosan. Biomaterials. 1998;19(20):1815–25.

    Article  Google Scholar 

  19. Poncelet D, Neufeld RJ, Goosen MFA, Burgarski B, Babak V. Formation of microgel beads by electric dispersion of polymer solutions. AICHE J. 1999;45(9):2018–23.

    Article  CAS  Google Scholar 

  20. Mazzitelli S, Tosi A, Balestra C, Nastruzzi C, Luca G, Mancuso F, et al. Production and characterization of alginate microcapsules produced by a vibrational encapsulation device. J Biomater Appl. 2008;23(2):123–45.

    Article  CAS  Google Scholar 

  21. Gupta A, Seifalian AM, Ahmad Z, Edirisinghe MJ, Winslet MC. Novel electrohydrodynamic printing of nanocomposite biopolymer scaffolds. J Bioact Compat Polym. 2007;22(3):265–80.

    Article  CAS  Google Scholar 

  22. Liu VA, Bhatia SN. Three-dimensional photopatterning of hydrogels containing living cells. Biomed Microdevices. 2002;4(4):257–66.

    Article  CAS  Google Scholar 

  23. Xia Y, Whitesides GM. Soft lithography. Angew Chemie - Int Ed. 1998;37(5):550–75.

    Article  CAS  Google Scholar 

  24. Zhang H, Tumarkin E, Sullan RMA, Walker GC, Kumacheva E. Exploring microfluidic routes to microgels of biological polymers. Macromol Rapid Commun. 2007;28(5):527–38.

    Article  CAS  Google Scholar 

  25. Garstecki P, Gitlin I, Diluzio W, Whitesides GM, Kumacheva E, Stone HA. Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett. 2004;85(13):2649–51.

    Article  CAS  Google Scholar 

  26. Yao R, Zhang R, Wang X. Design and evaluation of a cell microencapsulating device for cell assembly technology. J Bioact Compat Polym. 2009;24(SUPPL.1):48–62.

    Article  Google Scholar 

  27. Nankova BB. Nicotinic induction of preproenkephalin and tyrosine hydroxylase gene expression in butyrate-differentiated rat PC12 cells: a model for adaptation to gut-derived environmental signals. Pediatr Res. 2003;53(1):113–8.

    Article  CAS  Google Scholar 

  28. RAW 264.7 ATCC® TIB-71™ [Internet]. [cited 2020 Nov 10]. Available from: https://www.atcc.org/products/all/tib-71.aspx#culturemethod

  29. Bansal A, D’Sa S, D’Souza MJ. Biofabrication of microcapsules encapsulating beta-TC-6 cells via scalable device and in-vivo evaluation in type 1 diabetic mice. Int J pharm [internet]. 2019;572(October):118830. Available from: https://doi.org/10.1016/j.ijpharm.2019.118830, 2019.

  30. Acridine Orange Staining: Principle, Procedure, Results and Applications - Learn Microbiology Online [Internet]. [cited 2020 Apr 8]. Available from: https://microbeonline.com/acridine-orange-staining-principle-procedure-results-applications/

  31. Thu B, Bruheim P, Espevik T, Smidsrød O, Soon-Shiong P, Skjåk-Bræk G. Alginate polycation microcapsules: I. interaction between alginate and polycation. Biomaterials. 1996;17(10):1031–40.

    Article  CAS  Google Scholar 

  32. Murnane KS, Perrine SA, Finton BJ, Galloway MP, Howell LL, Fantegrossi WE. Effects of exposure to amphetamine derivatives on passive avoidance performance and the central levels of monoamines and their metabolites in mice: correlations between behavior and neurochemistry. Psychopharmacology (Berl) [Internet]. 2012 Apr [cited 2020 Nov 10];220(3):495–508. Available from: /pmc/articles/PMC3289749/?report=abstract.

  33. Hyatt WS, Berquist MD, Chitre NM, Russell LN, Rice KC, Murnane KS, et al. Repeated administration of synthetic cathinone 3,4-methylenedioxypyrovalerone persistently increases impulsive choice in rats. Behav Pharmacol [Internet]. 2019 Oct 1 [cited 2020 Nov 10];30(7):555–65. Available from: https://pubmed.ncbi.nlm.nih.gov/31211703/

  34. Ray A, Chitre NM, Daphney CM, Blough BE, Canal CE, Murnane KS. Effects of the second-generation “bath salt” cathinone alpha-pyrrolidinopropiophenone (α-PPP) on behavior and monoamine neurochemistry in male mice. Psychopharmacology (Berl) [Internet]. 2019 Mar 1 [cited 2020 Nov 10];236(3):1107–17. Available from: /pmc/articles/PMC6443494/?report=abstract.

  35. Chitre NM, Wood BJ, Ray A, Moniri NH, Murnane KS. Docosahexaenoic acid protects motor function and increases dopamine synthesis in a rat model of Parkinson’s disease via mechanisms associated with increased protein kinase activity in the striatum. Neuropharmacology [Internet]. 2020 May 1 [cited 2020 Nov 10];167. Available from: https://pubmed.ncbi.nlm.nih.gov/32001239/

  36. Chitre NM, Bagwell MS, Murnane KS. The acute toxic and neurotoxic effects of 3,4-methylenedioxymethamphetamine are more pronounced in adolescent than adult mice. Behav Brain Res [Internet]. 2020 Feb 17 [cited 2020 Nov 10];380. Available from: https://pubmed.ncbi.nlm.nih.gov/31809766/

  37. Yu W, Song H, Zheng G, Liu X, Zhang Y, Ma X. Study on membrane characteristics of alginate-chitosan microcapsule with cell growth. J Memb Sci [Internet] 2011;377(1–2):214–220. Available from: https://doi.org/10.1016/j.memsci.2011.04.053

  38. Gala RP, D’Souza M, Zughaier SM. Evaluation of various adjuvant nanoparticulate formulations for meningococcal capsular polysaccharide-based vaccine. Vaccine [internet]. 2016;34(28):3260–7. Available from: https://doi.org/10.1016/j.vaccine.2016.05.010

  39. Nisisako T, Torii T. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip [Internet]. 2008 Jan 29 [cited 2020 Jul 25];8(2):287–93. Available from: https://pubs.rsc.org/en/content/articlehtml/2008/lc/b713141k

  40. Kobayashi I, Mukataka S, Nakajima M. Production of monodisperse oil-in-water emulsions using a large silicon straight-through microchannel plate. Ind Eng Chem Res. 2005;44(15):5852–6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devyani J. Joshi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, D.J., Chitre, N.M., Bansal, A. et al. Formulation and Characterization of Microcapsules Encapsulating PC12 Cells as a Prospective Treatment Approach for Parkinson’s Disease. AAPS PharmSciTech 22, 149 (2021). https://doi.org/10.1208/s12249-021-02007-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02007-9

Key Words

Navigation