Skip to main content

Advertisement

Log in

Therapeutic Fusion Proteins

  • Review Article-theme
  • Recent Advances in Drug Delivery
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Therapeutic fusion proteins are a class of hybrid constructs that combine distinct biomolecules into a single platform with the additive effects of the components. The ability to fuse two unrelated proteins provides a means to localize mechanisms to better treat a range of diseases. Fusion proteins can be designed to impart diverse functions, including increasing half-life, providing targeting, and enabling sustained signaling. Of these, half-life extenders, which are fused to a therapeutic protein to increase exposure, are the most established group of fusion proteins, with many clinical successes. Rapid advances in antibody and antibody-derivative technology have enabled the fusion of targeting domains with therapeutic proteins. An emerging group of therapeutic fusion proteins has two separate active functions. Although most research for therapeutic fusion proteins focuses on cancer, prior successes provide a foundation for studies into other diseases as well. The exponential emergence of biopharmaceuticals gives precedence for increased research into therapeutic fusion proteins for a multitude of diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Strohl WR. Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs. 2015;29(4):215–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vaishya R, Khurana V, Patel S, Mitra AK. Long-term delivery of protein therapeutics. Expert Opin Drug Deliv. 2015;12(3):415–40.

    Article  CAS  PubMed  Google Scholar 

  3. Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22(6):868–76.

    Article  CAS  PubMed  Google Scholar 

  4. Duivelshof BL, Murisier A, Camperi J, Fekete S, Beck A, Guillarme D, D’Atri V. Therapeutic Fc-fusion proteins: current analytical strategies. J Sep Sci. 2021;44(1):35–62.

    Article  CAS  PubMed  Google Scholar 

  5. Wilkinson I, Hale G. Systematic analysis of the varied designs of 819 therapeutic antibodies and Fc fusion proteins assigned international nonproprietary names. mAbs. 2022;14(1):2123299.

  6. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25.

    Article  CAS  PubMed  Google Scholar 

  7. Spencer-Green G. Etanercept (Enbrel): update on therapeutic use. Ann Rheum Dis. 2000;59(90001):46i–49.

    Article  Google Scholar 

  8. Goffe B, Cather JC. Etanercept: an overview. J Am Acad Dermatol. 2003;49(2, Supplement):105–11.

    Article  Google Scholar 

  9. Zhou H. Clinical pharmacokinetics of etanercept: a fully humanized soluble recombinant tumor necrosis factor receptor fusion protein. J Clin Pharmacol. 2005;45(5):490–7.

    Article  CAS  PubMed  Google Scholar 

  10. Jafari R, Zolbanin NM, Rafatpanah H, Majidi J, Kazemi T. Fc-fusion proteins in therapy: an updated view. Curr Med Chem. 2017;24(12):1228–37.

    Article  CAS  PubMed  Google Scholar 

  11. Liu L. Pharmacokinetics of monoclonal antibodies and Fc-fusion proteins. Protein Cell. 2018;9(1):15–32.

    Article  CAS  PubMed  Google Scholar 

  12. Siriwattananon K, Manopwisedjaroen S, Kanjanasirirat P, Budi Purwono P, Rattanapisit K, Shanmugaraj B, Smith DR, Borwornpinyo S, Thitithanyanont A, Phoolcharoen W. Development of plant-produced recombinant ACE2-Fc fusion protein as a potential therapeutic agent against SARS-CoV-2. Front Plant Sci. 2021;11:604663.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shapiro AD, Angchaisuksiri P, Astermark J, Benson G, Castaman G, Eichler H, Jiménez-Yuste V, Kavakli K, Matsushita T, Poulsen LH, Wheeler AP, Young G, Zupančić-Šalek S, Oldenburg J, Chowdary P. Long-term efficacy and safety of subcutaneous concizumab prophylaxis in hemophilia A and hemophilia A/B with inhibitors. Blood Adv. 2022;6(11):3422–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Malec L, Van Damme A, Chan AKC, Spasova M, Jain N, Sensinger C, Dumont J, Lethagen S, Carcao M, Peyvandi F. Recombinant factor VIII Fc fusion protein for first-time immune tolerance induction: final results of the verITI-8 study. Blood. 2023;141(16):1982–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo M, Wang R, Geng J, Li Z, Liu M, Lu X, Wei J, Liu M. Human TFF2-Fc fusion protein alleviates DSS-induced ulcerative colitis in C57BL/6 mice by promoting intestinal epithelial cells repair and inhibiting macrophage inflammation. Inflammopharmacology. 2023;31(3):1387–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heise T, Chien J, Beals JM, Benson C, Klein O, Moyers JS, Haupt A, Pratt EJ. Pharmacokinetic and pharmacodynamic properties of the novel basal insulin Fc (insulin efsitora alfa), an insulin fusion protein in development for once-weekly dosing for the treatment of patients with diabetes. Diabetes Obes Metab. 2023;25(4):1080–90.

    Article  CAS  PubMed  Google Scholar 

  17. Jin J, Cui G, Mi N, Wu W, Zhang X, Xiao C, Wang J, Qiu X, Han M, Li Z, Wang L, Lu T, Niu H, Wu Z, Li J. Safety, pharmacokinetics, and pharmacodynamics of TG103, a novel long-acting GLP-1/Fc fusion protein after a single ascending dose in Chinese healthy subjects. Eur J Pharm Sci. 2023;185:106448.

    Article  CAS  PubMed  Google Scholar 

  18. Nilvebrant J, Hober S. The albumin-binding domain as a scaffold for protein engineering. Comput Struct Biotechnol J. 2013;6:e201303009.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Fala L. Tanzeum (Albiglutide): a once-weekly GLP-1 receptor agonist subcutaneous injection approved for the treatment of patients with type 2 diabetes. Am Health Drug Benefits. 2015;8(Spec Feature):126–30.

    PubMed  PubMed Central  Google Scholar 

  20. Vilsbøll T, Agersø H, Krarup T, Holst JJ. Similar elimination rates of glucagon-like peptide-1 in obese type 2 diabetic patients and healthy subjects. J Clin Endocrinol Metab. 2003;88(1):220–4.

    Article  PubMed  Google Scholar 

  21. Tan H, Su W, Zhang W, Zhang J, Sattler M, Zou P. Albumin-binding domain extends half-life of glucagon-like peptide-1. Eur J Pharmacol. 2021;890:173650.

    Article  CAS  PubMed  Google Scholar 

  22. Xia J, Gao G, Zhang C, Ying J, Li J. Albumin-binding DARPins as scaffold improve the hypoglycemic and anti-obesity effects of exendin-4 in vivo. Eur J Pharm Sci. 2023;185:106422.

    Article  CAS  PubMed  Google Scholar 

  23. Xu D, Wu H, Zhou C. Fusion of parathyroid hormone (1–34) to an albumin-binding domain improves osteogenesis. J Drug Deliv Sci Technol. 2023;79:104019.

    Article  CAS  Google Scholar 

  24. Bern M, Nilsen J, Ferrarese M, Sand KMK, Gjølberg TT, Lode HE, Davidson RJ, Camire RM, Bækkevold ES, Foss S, Grevys A, Dalhus B, Wilson J, Høydahl LS, Christianson GJ, Roopenian DC, Schlothauer T, Michaelsen TE, Moe MC, Lombardi S, Pinotti M, Sandlie I, Branchini A, Andersen JT. An engineered human albumin enhances half-life and transmucosal delivery when fused to protein-based biologics. Sci Transl Med. 2020;12(565):eabb0580.

    Article  CAS  PubMed  Google Scholar 

  25. Tao H-Y, Wang R-Q, Sheng W-J, Zhen Y-S. The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int J Biol Macromol. 2021;187:24–34.

    Article  CAS  PubMed  Google Scholar 

  26. Sockolosky JT, Kivimäe S, Szoka FC. Fusion of a short peptide that binds immunoglobulin G to a recombinant protein substantially increases its plasma half-life in mice. PLoS ONE. 2014;9(7):e102566.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Amidzadeh Z, Rismani E, Shokrgozar MA, Rahimi H, Golkar M. In silico design of fusion keratinocyte growth factor containing collagen-binding domain for tissue engineering application. J Mol Graph Model. 2023;118:108351.

    Article  CAS  PubMed  Google Scholar 

  28. Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Ann Rev Pharmacol Toxicol. 2015;55(1):489–511.

    Article  Google Scholar 

  29. Arlotta KJ, Owen SC. Antibody and antibody derivatives as cancer therapeutics. WIREs Nanomedicine Nanobiotechnol. 2019;11(5):e1556.

    Article  Google Scholar 

  30. Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Disc. 2019;18(8):585–608.

    Article  CAS  Google Scholar 

  31. Ma J, Mo Y, Tang M, Shen J, Qi Y, Zhao W, Huang Y, Xu Y, Qian C. Bispecific antibodies: from research to clinical application. Front Immunol. 2021;12:626616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang JM, An J. Cytokines, inflammation, and pain. Int Anesthesiol Clin. 2007;45(2):27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vial T, Descotes J. Clinical toxicity of cytokines used as haemopoietic growth factors. Drug Saf. 1995;13(6):371–406.

    Article  CAS  PubMed  Google Scholar 

  34. Martomo SA, Lu D, Polonskaya Z, Luna X, Zhang Z, Feldstein S, Lumban-Tobing R, Almstead DK, Miyara F, Patel J. Single-dose anti-PD-L1/IL-15 fusion protein KD033 generates synergistic antitumor immunity with robust tumor-immune gene signatures and memory responses. Mol Cancer Ther. 2021;20(2):347–56.

    Article  CAS  PubMed  Google Scholar 

  35. Zhou Y, Quan G, Liu Y, Wang Z, Shi N, Wu Y, Liu Q, Gao X, Zhang R, Luo L. Anti-Claudin18.2-IL-21 fusion protein bifunctional molecule has more powerful anti-tumor effect and better safety. Int Immunopharmacol. 2023;115:109634.

    Article  CAS  PubMed  Google Scholar 

  36. Venetz D, Koovely D, Weder B, Neri D. Targeted reconstitution of cytokine activity upon antigen binding using split cytokine antibody fusion proteins. J Biol Chem. 2016;291(35):18139–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Quijano-Rubio A, Bhuiyan AM, Yang H, Leung I, Bello E, Ali LR, Zhangxu K, Perkins J, Chun J-H, Wang W, Lajoie MJ, Ravichandran R, Kuo Y-H, Dougan SK, Riddell SR, Spangler JB, Dougan M, Silva D-A, Baker D. A split, conditionally active mimetic of IL-2 reduces the toxicity of systemic cytokine therapy. Nat Biotechnol. 2023;41(4):532–40.

    Article  CAS  PubMed  Google Scholar 

  38. Murer P, Neri D. Antibody-cytokine fusion proteins: a novel class of biopharmaceuticals for the therapy of cancer and of chronic inflammation. New Biotechnol. 2019;52:42–53.

    Article  CAS  Google Scholar 

  39. Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16(2):139–49.

    Article  CAS  PubMed  Google Scholar 

  40. Borghaei H, Smith MR, Campbell KS. Immunotherapy of cancer. Eur J Pharmacol. 2009;625(1):41–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu J, Meng Z, Xu T, Kuerban K, Wang S, Zhang X, Fan J, Ju D, Tian W, Huang X, Huang X, Pan D, Chen H, Zhao W, Ye L. A SIRPαFc fusion protein conjugated with the collagen-binding domain for targeted immunotherapy of non-small cell lung cancer. Front Immunol. 2022;13:845217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jacob A, Shen L, He J, Nealon K, Alexander JJ, Ambrus JL. Effect of lymphotoxin blockage on different stages of Sjogren’s syndrome in an animal model. Rheumatol Autoimmun. 2022;02(02):76–81.

    Article  CAS  Google Scholar 

  43. Han L, Zhang X-Z, Wang C, Tang X-Y, Zhu Y, Cai X-Y, Wu Y-J, Shu J-L, Wang Q-T, Chen J-Y, Chang Y, Wu H-X, Zhang L-L, Wei W. IgD-Fc-Ig fusion protein, a new biological agent, inhibits T cell function in CIA rats by inhibiting IgD-IgDR-Lck-NF-κB signaling pathways. Acta Pharmacol Sin. 2020;41(6):800–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hu X-X, Zhang A-J, Pan W-W, Xin Q-L, Chen J-Y, Zhang L-L, Chang Y, Wu Y-J, Wei W. An IgD-Fc-Ig fusion protein restrains the activation of T and B cells by inhibiting IgD-IgDR-Lck signaling in rheumatoid arthritis. Acta Pharmacol Sin. 2022;43(2):387–400.

    Article  CAS  PubMed  Google Scholar 

  45. Qu T, Li B, Wang Y. Targeting CD47/SIRPα as a therapeutic strategy, where we are and where we are headed. Biomark Res. 2022;10(1):20.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Middleton MR, McAlpine C, Woodcock VK, Corrie P, Infante JR, Steven NM, Evans TRJ, Anthoney A, Shoushtari AN, Hamid O, Gupta A, Vardeu A, Leach E, Naidoo R, Stanhope S, Lewis S, Hurst J, O’Kelly I, Sznol M. Tebentafusp, A TCR/anti-CD3 bispecific fusion protein targeting gp100, potently activated antitumor immune responses in patients with metastatic melanoma. Clin Cancer Res. 2020;26(22):5869–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lv Z, Zhang P, Li D, Qin M, Nie L, Wang X, Ai L, Feng Z, Odhiambo WO, Ma Y, Ji Y. CD19-targeting fusion protein combined with PD1 antibody enhances anti-tumor immunity in mouse models. OncoImmunology. 2020;9(1):1747688.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang R, Pei P, Wang Y, Guo Q, Luo SZ, Chen L. A single-chain variable fragment-anticancer lytic peptide (scFv-ACLP) fusion protein for targeted cancer treatment. Chem Biol Drug Des. 2023;101(6):1406–15.

    Article  CAS  PubMed  Google Scholar 

  49. Bruno S, Margiotta M, Cozzolino M, Bianchini P, Diaspro A, Cavanna L, Tognolini M, Abbruzzetti S, Viappiani C. A photosensitizing fusion protein with targeting capabilities. Biomol Concepts. 2022;13(1):175–82.

    Article  CAS  PubMed  Google Scholar 

  50. Mehrab R, Sedighian H, Sotoodehnejadnematalahi F, Halabian R, Fooladi AAI. A comparative study of the arazyme-based fusion proteins with various ligands for more effective targeting cancer therapy: an in-silico analysis. Res Pharm Sci. 2023;18(2):159–76.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ahmadzadeh M, Mohit E. Therapeutic potential of a novel IP-10-(anti-HER2 scFv) fusion protein for the treatment of HER2-positive breast cancer. Biotechnol Lett. 2023;45(3):371–85.

    Article  CAS  PubMed  Google Scholar 

  52. Baig MH, Adil M, Khan R, Dhadi S, Ahmad K, Rabbani G, Bashir T, Imran MA, Husain FM, Lee EJ, Kamal MA, Choi I. Enzyme targeting strategies for prevention and treatment of cancer: implications for cancer therapy. Semin Cancer Biol. 2019;56:1–11.

    Article  CAS  PubMed  Google Scholar 

  53. Platt FM, d’Azzo A, Davidson BL, Neufeld EF, Tifft CJ. Lysosomal storage diseases. Nat Rev Dis Prim. 2018;4(1):27.

    Article  PubMed  Google Scholar 

  54. Zhou Z, Austin GL, Shaffer R, Armstrong DD, Gentry MS. Antibody-mediated enzyme therapeutics and applications in glycogen storage diseases. Trends Mol Med. 2019;25(12):1094–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bagshawe KD. Antibody-directed enzyme prodrug therapy: a review. Drug Dev Res. 1995;34(2):220–30.

    Article  CAS  Google Scholar 

  56. Alqahtani AD, Al-Mansoori L, Bashraheel SS, Rashidi FB, Al-Yafei A, Elsinga P, Domling A, Goda SK. Production of “biobetter” glucarpidase variants to improve drug detoxification and antibody directed enzyme prodrug therapy for cancer treatment. Eur J Pharm Sci. 2019;127:79–91.

    Article  CAS  PubMed  Google Scholar 

  57. Nervig CS, Hatch ST, Owen SC. Complementation dependent enzyme prodrug therapy enables targeted activation of prodrug on HER2-positive cancer cells. ACS Med Chem Lett. 2022;3(11):1769–75.

    Article  Google Scholar 

  58. Bulaklak K, Gersbach CA. The once and future gene therapy. Nat Commun. 2020;11(1):5820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rihtar E, Lebar T, Lainšček D, Kores K, Lešnik S, Bren U, Jerala R. Chemically inducible split protein regulators for mammalian cells. Nat Chem Biol. 2023;19(1):64–71.

    Article  CAS  PubMed  Google Scholar 

  60. Brezgin S, Kostyusheva A, Kostyushev D, Chulanov V. Dead Cas systems: types, principles, and applications. Int J Mol Sci. 2019;20(23):6041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee TI, Young RA. Transcriptional regulation and its misregulation in disease. Cell. 2013;152(6):1237–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jiang H-K, Ambrose NL, Chung CZ, Wang Y-S, Söll D, Tharp JM. Split aminoacyl-tRNA synthetases for proximity-induced stop codon suppression. Proc Natl Acad Sci. 2023;120(8):e2219758120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nousiainen A, Schenkwein D, Ylä-Herttuala S. Characterization of a new IN-I-PpoI fusion protein and a homology-arm containing transgene cassette that improve transgene expression persistence and 28S rRNA gene-targeted insertion of lentiviral vectors. PLoS ONE. 2023;18(1):e0280894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Becirovic E. Maybe you can turn me on: CRISPRa-based strategies for therapeutic applications. Cell Mol Life Sci. 2022;79(2).

  65. Chen Y, Zhang W, Bai X, Liu Y. Targeting the transcriptional activity of STAT3 by a novel fusion protein. BMC Cancer. 2022;22(1):751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lessard E, Rennie K, Haqqani A, Ling B, Whitfield J, Paradis A, Araujo J, Yoganathan N, Gillard J, Stanimirovic D, Chakravarthy B. Pharmacokinetics and pharmacodynamic effect of a blood-brain barrier-crossing fusion protein therapeutic for Alzheimer’s disease in rat and dog. Pharm Res. 2022;39(7):1497–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jung H, Lee SY, Lim S, Choi HR, Choi Y, Kim M, Kim S, Lee Y, Han KH, Chung W-S, Kim CH. Anti-inflammatory clearance of amyloid-β by a chimeric Gas6 fusion protein. Nat Med. 2022;28(9):1802–12.

    Article  CAS  PubMed  Google Scholar 

  68. Kariolis MS, Wells RC, Getz JA, Kwan W, Mahon CS, Tong R, Kim DJ, Srivastava A, Bedard C, Henne KR, Giese T, Assimon VA, Chen X, Zhang Y, Solanoy H, Jenkins K, Sanchez PE, Kane L, Miyamoto T, Chew KS, Pizzo ME, Liang N, Calvert MEK, DeVos SL, Baskaran S, Hall S, Sweeney ZK, Thorne RG, Watts RJ, Dennis MS, Silverman AP, Zuchero YJY. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med. 2020;12(545):eaay1359.

    Article  CAS  PubMed  Google Scholar 

  69. Goretzki A, Lin YJ, Meier C, Dorn B, Wolfheimer S, Jamin A, Schott M, Wangorsch A, Vieths S, Jakob T, Scheurer S, Schülke S. Stimulation of naïve B cells with a fusion protein consisting of FlaA and Bet v 1 induces regulatory B cells ex vivo. Allergy. 2023;78(3):663–81.

    Article  CAS  PubMed  Google Scholar 

  70. Ye X, Chen Y, Qi J, Zhu S, Wu Y, Xiong J, Hu F, Guo Z, Liang X. Design and pharmaceutical evaluation of bifunctional fusion protein of FGF21 and GLP-1 in the treatment of nonalcoholic steatohepatitis. Eur J Pharmacol. 2023;952:175811.

    Article  CAS  PubMed  Google Scholar 

  71. Jiang S, Jia Z, Zheng Y, Zhang J, Li Z, Yu X, Zhang K, Bai Y, Guo W, Kong Y, Li Q. Bifunctional fusion protein targeting both FXIIa and FXIa displays potent anticoagulation effects. Life Sci. 2022;309:121021.

    Article  CAS  PubMed  Google Scholar 

  72. Strauss J, Gatti-Mays ME, Cho BC, Hill A, Salas S, McClay E, Redman JM, Sater HA, Donahue RN, Jochems C, Lamping E, Burmeister A, Marté JL, Cordes LM, Bilusic M, Karzai F, Ojalvo LS, Jehl G, Rolfe PA, Hinrichs CS, Madan RA, Schlom J, Gulley JL. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with human papillomavirus-associated malignancies. J ImmunoTherapy Cancer. 2020;8(2):e001395.

    Article  Google Scholar 

  73. Yoo C, Oh DY, Choi HJ, Kudo M, Ueno M, Kondo S, Chen LT, Osada M, Helwig C, Dussault I, Ikeda M. Phase I study of bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in patients with pretreated biliary tract cancer. J Immunother Cancer. 2020;8(1):e000564.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Cho BC, Daste A, Ravaud A, Salas S, Isambert N, McClay E, Awada A, Borel C, Ojalvo LS, Helwig C, Rolfe PA, Gulley JL, Penel N. Bintrafusp alfa, a bifunctional fusion protein targeting TGF-β and PD-L1, in advanced squamous cell carcinoma of the head and neck: results from a phase I cohort. Jr ImmunoTherapy Cancer. 2020;8(2):e000664.

    Article  Google Scholar 

  75. Peper-Gabriel JK, Pavlidou M, Pattarini L, Morales-Kastresana A, Jaquin TJ, Gallou C, Hansbauer E-M, Richter M, Lelievre H, Scholer-Dahirel A, Bossenmaier B, Sancerne C, Riviere M, Grandclaudon M, Zettl M, Bel Aiba RS, Rothe C, Blanc V, Olwill SA. The PD-L1/4-1BB bispecific antibody–Anticalin fusion protein PRS-344/S095012 elicits strong T-cell stimulation in a tumor-localized manner. Clin Cancer Res. 2022;28(15):3387–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. De Groot AS, Scott DW. Immunogenicity of protein therapeutics. Trends Immunol. 2007;28(11):482–90.

    Article  PubMed  Google Scholar 

  77. Sperinde G, Montgomery D, Mytych DT. Clinical immunogenicity risk assessment for a fusion protein. AAPS J. 2020;22(3):64.

    Article  CAS  PubMed  Google Scholar 

  78. Baker MP, Reynolds HM, Lumicisi B, Bryson CJ. Immunogenicity of protein therapeutics: The key causes, consequences and challenges. Self Nonself. 2010;1(4):314–22.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Carrascosa J-M, Jacobs I, Petersel D, Strohal R. Biosimilar drugs for psoriasis: principles, present, and near future. Dermatol Ther. 2018;8(2):173–94.

    Article  Google Scholar 

  80. Barbier L, Ebbers HC, Declerck P, Simoens S, Vulto AG, Huys I. The efficacy, safety, and immunogenicity of switching between reference biopharmaceuticals and biosimilars: a systematic review. Clin Pharmacol Ther. 2020;108(4):734–55.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jenneck C, Novak N. The safety and efficacy of alefacept in the treatment of chronic plaque psoriasis. Ther Clin Risk Manag. 2007;3(3):411–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Schiff M. Abatacept treatment for rheumatoid arthritis. Rheumatology. 2010;50(3):437–49.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Dubois EA, Rissmann R, Cohen AF. Rilonacept and canakinumab. Br J Clin Pharmacol. 2011;71(5):639–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bussel JB, Soff G, Balduzzi A, Cooper N, Lawrence T, Semple JW. A review of romiplostim mechanism of action and clinical applicability. Drug Des Dev Ther. 2021;15:2243–68.

    Article  Google Scholar 

  85. Lombardi Y, François H. Belatacept in kidney transplantation: what are the true benefits? A systematic review. Front Med (Lausanne). 2022;9:942665.

    Article  PubMed  Google Scholar 

  86. Liberski S, Wichrowska M, Kocięcki J. Aflibercept versus Faricimab in the treatment of neovascular age-related macular degeneration and diabetic macular edema: a review. Int J Mol Sci. 2022;23(16):9424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mansour AM, Stewart MW, Farah ME, Mansour HA, Chhablani J. Ziv-aflibercept: a cost-effective, off-label, highly potent antagonist of vascular endothelial growth factor. Acta Ophthalmol. 2020;98(5):e540–8.

    Article  CAS  PubMed  Google Scholar 

  88. Keam SJ. Efanesoctocog alfa: first approval. Drugs. 2023;83(7):633–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gerstein HC, Colhoun HM, Dagenais GR, Diaz R, Lakshmanan M, Pais P, Probstfield J, Riddle MC, Rydén L, Xavier D, Atisso CM, Avezum A, Basile J, Chung N, Conget I, Cushman WC, Franek E, Hancu N, Hanefeld M, Holt S, Jansky P, Keltai M, Lanas F, Leiter LA, Lopez-Jaramillo P, Cardona-Munoz EG, Pirags V, Pogosova N, Raubenheimer PJ, Shaw J, Sheu WHH, Temelkova-Kurktschiev T. Design and baseline characteristics of participants in the Researching cardiovascular Events with a Weekly INcretin in Diabetes (REWIND) trial on the cardiovascular effects of dulaglutide. Diabetes Obes Metab. 2018;20(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  90. Bowden SA, Foster BL. Profile of asfotase alfa in the treatment of hypophosphatasia: design, development, and place in therapy. Drug Des Dev Ther. 2018;12:3147–61.

    Article  CAS  Google Scholar 

  91. Lamb YN, Hoy SM. Eftrenonacog alfa: a review in haemophilia B. Drugs. 2023;83(9):807–18.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kubasch AS, Fenaux P, Platzbecker U. Development of luspatercept to treat ineffective erythropoiesis. Blood Adv. 2021;5(5):1565–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Schwartzberg LS, Bhat G, Peguero J, Agajanian R, Bharadwaj JS, Restrepo A, Hlalah O, Mehmi I, Chawla S, Hasal SJ, Yang Z, Cobb PW. Eflapegrastim, a long-acting granulocyte-colony stimulating factor for the management of chemotherapy-induced neutropenia: results of a phase III trial. Oncologist. 2020;25(8):e1233–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Matthews JE, Stewart MW, De Boever EH, Dobbins RL, Hodge RJ, Walker SE, Holland MC, Bush MA. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(12):4810–7.

    Article  CAS  PubMed  Google Scholar 

  95. Lyseng-Williamson KA. Coagulation factor IX (Recombinant), albumin fusion protein (Albutrepenonacog alfa; Idelvion(®)): a review of its use in haemophilia B. Drugs. 2017;77(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  96. Helleberg H, Lindecrona RH, Thygesen P, Bjelke M. Structure identification of circulating metabolites from somapacitan, a long-acting growth hormone derivative, and pharmacokinetics after single and multiple subcutaneous dosing in rats. Eur J Pharm Sci. 2022;168:106032.

    Article  CAS  PubMed  Google Scholar 

  97. Fares FA, Suganuma N, Nishimori K, Lapolt PS, Hsueh AJ, Boime I. Design of a long-acting follitropin agonist by fusing the C-terminal sequence of the chorionic gonadotropin beta subunit to the follitropin beta subunit. Proc Natl Acad Sci. 1992;89(10):4304–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Deal CL, Steelman J, Vlachopapadopoulou E, Stawerska R, Silverman LA, Phillip M, Kim HS, Ko C, Malievskiy O, Cara JF, Roland CL, Taylor CT, Valluri SR, Wajnrajch MP, Pastrak A, Miller BS. Efficacy and safety of weekly somatrogon vs daily somatropin in children with growth hormone deficiency: a phase 3 study. J Clin Endocrinol Metab. 2022;107(7):e2717–28.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Figgitt DP, Lamb HM, Goa KL. Denileukin diftitox. Am J Clin Dermatol. 2000;1(1):67–72.

    Article  CAS  PubMed  Google Scholar 

  100. Jen EY, Gao X, Li L, Zhuang L, Simpson NE, Aryal B, Wang R, Przepiorka D, Shen YL, Leong R, Liu C, Sheth CM, Bowen S, Goldberg KB, Farrell AT, Blumenthal GM, Pazdur R. FDA approval summary: tagraxofusp-erzs for treatment of blastic plasmacytoid dendritic cell neoplasm. Clin Cancer Res. 2020;26(3):532–6.

    Article  CAS  PubMed  Google Scholar 

  101. Dhillon S. Avalglucosidase alfa: first approval. Drugs. 2021;81(15):1803–9.

    Article  CAS  PubMed  Google Scholar 

  102. Hua G, Carlson D, Starr JR. Tebentafusp-tebn: a novel bispecific T-cell engager for metastatic uveal melanoma. J Adv Pract Oncol. 2022;13(7):717–23.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support of NIH R01GM134069 and NIH R21CA256460.

Author information

Authors and Affiliations

Authors

Contributions

MCM and SCO both contributed to the conception, writing, and editing of this article. MCM created Fig. 1 and the graphical abstract using BioRender.com.

Corresponding author

Correspondence to Shawn C. Owen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Aliasger Salem.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsh, M.C., Owen, S.C. Therapeutic Fusion Proteins. AAPS J 26, 3 (2024). https://doi.org/10.1208/s12248-023-00873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00873-8

Keywords

Navigation