Skip to main content
Log in

Spatial magnetic field mapping with Raman spectra of laser-cooled atoms in free-fall

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

For upcoming experiments, we require a linear magnetic field to be applied over the longitudinal extent of an atom’s trajectory through a vertically oriented atom interferometer. Additionally, we plan to use magnetically sensitive states. This combination comes at the cost of increased sensitivity to noise in the external field environment and, as a result, the magnetic field must be more carefully characterized and controlled than in a standard atom interferometer. We present our methods to characterize an extended, linear magnetic field environment which can be suitable for making such a system. We perform standard Raman spectroscopy but by adding time resolution to the spectroscopy, we are able to use the expansion of a thermal cloud of atoms to sample a large range along the ballistic atom path with a single spectrum. A small number of these spectra can then be used to map the field along the entire path with better precision than standard Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data used for the writing of this article can be made available upon request.

Notes

  1. The proper function is an Airy function. However, we found the Gaussian fit easier to implement and good enough for our purpose.

References

  1. D.W. Keith, C.R. Ekstrom, Q.A. Turchette, D.E. Pritchard, Phys. Rev. Lett. 66, 2693 (1991). https://doi.org/10.1103/PhysRevLett.66.2693

    Article  ADS  CAS  PubMed  Google Scholar 

  2. O. Carnal, J. Mlynek, Phys. Rev. Lett. 66, 2689 (1991). https://doi.org/10.1103/PhysRevLett.66.2689

    Article  ADS  CAS  PubMed  Google Scholar 

  3. F. Riehle, T. Kisters, A. Witte, J. Helmcke, C.J. Bordé, Phys. Rev. Lett. 67, 177 (1991). https://doi.org/10.1103/PhysRevLett.67.177

    Article  ADS  CAS  PubMed  Google Scholar 

  4. M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991). https://doi.org/10.1103/PhysRevLett.67.181

    Article  ADS  CAS  PubMed  Google Scholar 

  5. M. Kasevich, S. Chu, Appl. Phys. B Photophys. Laser Chem. 54, 321 (1992). https://doi.org/10.1007/BF00325375

    Article  ADS  Google Scholar 

  6. P. Storey, C. Cohen-Tannoudji, J. Phys. II 4, 1999 (1994). https://doi.org/10.1051/jp2:1994103

    Article  CAS  Google Scholar 

  7. P.R. Berman, Atom Interferometry, 1st edn. (Academic Press, San Diego, 1996)

    Google Scholar 

  8. J. Baudon, R. Mathevet, J. Robert, J. Phy. B-Atom. Mol. Opt. Phys. 32, R173 (1999). https://doi.org/10.1088/0953-4075/32/15/201

    Article  ADS  CAS  Google Scholar 

  9. A.D. Cronin, J. Schmiedmayer, D.E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009). https://doi.org/10.1103/RevModPhys.81.1051

    Article  ADS  CAS  Google Scholar 

  10. S. Lepoutre, H. Jelassi, G. Trénec, M. Büchner, J. Vigué, Gen. Relativ. Gravit. 43, 2011 (2011). https://doi.org/10.1007/s10714-010-1133-y

    Article  ADS  Google Scholar 

  11. B. Barrett, R. Geiger, I. Dutta, M. Meunier, B. Canuel, A. Gauguet, P. Bouyer, A. Landragin, C R Phys. 15, 875 (2014). https://doi.org/10.1016/j.crhy.2014.10.009

    Article  ADS  CAS  Google Scholar 

  12. R. Geiger, A. Landragin, S. Merlet, F. Pereira Dos Santos, AVS Quantum Sci. 2, 024702 (2020). https://doi.org/10.1116/5.0009093

    Article  ADS  Google Scholar 

  13. B. Barrett, A. Bertoldi, P. Bouyer, Phys. Scr. 91, 053006 (2016). https://doi.org/10.1088/0031-8949/91/5/053006

    Article  ADS  CAS  Google Scholar 

  14. K. Bongs, M. Holynski, J. Vovrosh, P. Bouyer, G. Condon, E. Rasel, C. Schubert, W.P. Schleich, A. Roura, Nat. Rev. Phys. 1, 731 (2019). https://doi.org/10.1038/s42254-019-0117-4

    Article  Google Scholar 

  15. J. Fang, J. Qin, Sensors 12, 6331 (2012). https://doi.org/10.3390/s120506331

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. N.P. Robins, P.A. Altin, J.E. Debs, J.D. Close, Atom lasers: production, properties and prospects for precision inertial measurement. Phys. Rep. 529, 265 (2013). https://doi.org/10.1016/j.physrep.2013.03.006

    Article  ADS  CAS  Google Scholar 

  17. M.S. Safronova, D. Budker, D. DeMille, D.F.J. Kimball, A. Derevianko, C.W. Clark, Rev. Mod. Phys. 90, 025008 (2018). https://doi.org/10.1103/RevModPhys.90.025008

    Article  ADS  CAS  Google Scholar 

  18. F.A. Narducci, A.T. Black, J.H. Burke, Adv. Phys. X 7, 1946426 (2022). https://doi.org/10.1080/23746149.2021.1946426

    Article  Google Scholar 

  19. M. Zimmermann, M.A. Efremov, A. Roura, W.P. Schleich, S.A. DeSavage, J.P. Davis, A. Srinivasan, F.A. Narducci, S.A. Werner, E.M. Rasel, Appl. Phys. B 123, 102 (2017). https://doi.org/10.1007/s00340-017-6655-5

    Article  ADS  CAS  Google Scholar 

  20. M. Zimmermann, M.A. Efremov, W. Zeller, W.P. Schleich, J.P. Davis, F.A. Narducci, New J. Phys. 21, 073031 (2019). https://doi.org/10.1088/1367-2630/ab2e8c

    Article  ADS  CAS  Google Scholar 

  21. O. Amit, Y. Margalit, O. Dobkowski, Z. Zhou, Y. Japha, M. Zimmermann, M. Efremov, F. Narducci, E. Rasel, W. Schleich, R. Folman, Phys. Rev. Lett. 123, 083601 (2019). https://doi.org/10.1103/PhysRevLett.123.083601

    Article  ADS  CAS  PubMed  Google Scholar 

  22. B.-G. Englert, J. Schwinger, M.O. Scully, Found. Phys. 18, 1045 (1988). https://doi.org/10.1007/BF01909939

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Schwinger, M.O. Scully, B.G. Englert, Zeitschrift für Physik D Atoms Mol. Clust. 10, 135 (1988). https://doi.org/10.1007/BF01384847

    Article  ADS  Google Scholar 

  24. M.O. Scully, B.-G. Englert, J. Schwinger, Phys. Rev. A 40, 1775 (1989). https://doi.org/10.1103/PhysRevA.40.1775

    Article  ADS  CAS  Google Scholar 

  25. L. Devenoges, G.D. Domenico, A. Stefanov, A. Jallageas, J. Morel, T. Südmeyer, P. Thomann, Metrologia 54, 239 (2017). https://doi.org/10.1088/1681-7575/aa62d1

    Article  ADS  CAS  Google Scholar 

  26. S. Jefferts, D. Meekhof, J. Shirley, T. Parker, F. Levi, inhref Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium (Cat. No.99CH36313), vol. 1, pp. 12–15. iSSN: 1075-6787, (1999). https://doi.org/10.1109/FREQ.1999.840695

  27. R. Wynands, S. Weyers, Metrologia 42, S64 (2005). https://doi.org/10.1088/0026-1394/42/3/S08

    Article  ADS  CAS  Google Scholar 

  28. M. Sales, M. Strobl, T. Shinohara, A. Tremsin, L.T. Kuhn, W.R.B. Lionheart, N.M. Desai, A.B. Dahl, S. Schmidt, Sci. Rep. 8(1), 2214 (2018). https://doi.org/10.1038/s41598-018-20461-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. G. Breit, I.I. Rabi, Phys. Rev. 38, 2082 (1931). https://doi.org/10.1103/PhysRev.38.2082.2

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Matthias Zimmermann, Maxim Efremov and Wolfgang Schleich for many useful discussions. We also gratefully acknowledge the generous support from the Office of the Secretary of Defense in the form of a Laboratory University Collaborative Initiative (LUCI) grant, the Office of Naval Research and the Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Narducci.

Additional information

This research was performed while the first author held an NRC Research Associateship award at the Naval Postgraduate School.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Narducci, F. Spatial magnetic field mapping with Raman spectra of laser-cooled atoms in free-fall. Eur. Phys. J. Spec. Top. 232, 3377–3385 (2023). https://doi.org/10.1140/epjs/s11734-023-01005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-01005-1

Navigation