Skip to main content
Log in

Study on influence of thickness and annealing on electrical characteristics of iron-doped vanadium oxide (Fe:V2O5) thin films for sensor application

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The objective of this study is to determine the ideal thickness and annealing temperature ranges for the derived 15 weight percent iron (Fe)-doped vanadium pentoxide (V2O5) nanoparticles by depositing them as thin films on a glass substrate using e-beam evaporation. The appropriateness of these films' structural, morphological, and electrical properties for the development of thin-film strain gauges is investigated. Through structural research, the nano-structured crystallite grain size of 0.1494 Å in an orthorhombic layered cubic structure was identified. The SEM images show the uniformly dispersed morphology of the deposited films. The greater adatom mobility seen as a result of surface diffusion kinetics and atomic shadowing is highlighted by the significant change in RMS surface roughness between 0.502 and 1.785 nm. Through examination of its electrical characteristics, it was discovered that when the film's thickness increased from 80 to 250 nm, the resistance decreased from 2.4 MΩ to 26.74 KΩ and ultimately to 24.38 KΩ. This decrease was further observed when the annealing temperature was raised to 500 °C. At the thickness range of 220 nm and the annealing temperature of 300 °C, the resistance also showed the lowest recorded dip of 11.75 KΩ. Therefore, it was concluded that these optimized process parameters of 220 nm and 300 °C would be appropriate for its utilization in the development of sensors, when addressing samples that contained 15 weight percent Fe: V2O5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

The authors confirm that data supporting the findings of this study are available within the article.

References

  1. H.M. Kalpana, V. Siddeswara Prasad, Development of the invar36 thin film strain gauge sensor for strain measurement. Measur. Sci. Technol. 25(6), 065102 (2014)

    Article  ADS  CAS  Google Scholar 

  2. V.P. Elanjeitsenni, K. Senthil Vadivu, B. Mouli Prasanth, A review on thin films, conducting polymers as sensor devices. Mater. Res. Express 9(2), 022001 (2022)

    Article  ADS  CAS  Google Scholar 

  3. Z. Ismail, Layer-layer assembly of water-based graphene for facile fabrication of sensitive strain gauges on paper. Cellulose 26, 1417–1429 (2019)

    Article  CAS  Google Scholar 

  4. P. Lei, C. Zhang, Y. Pang, S. Yang, M. Zhang, Fabrication and performance investigation of karma alloy thin film strain gauge. J. Shanghai Jiaotong Univ. Sci. 26(4), 454–462 (2021)

    Article  Google Scholar 

  5. H.M. Kalpana, V.S. Prasad, M.M. Nayak, Influence of annealing and thickness on the electrical properties of invar36 thin film for strain gauge applications. Int. J. Thin Films Sci. Technol. 2(3), 155 (2013)

    Article  Google Scholar 

  6. S. Heikebrügge, R. Ottermann, B. Breidenstein, M.C. Wurz, F. Dencker, Residual stresses from incremental hole drilling using directly deposited thin film strain gauges. Exp. Mech. 62(4), 701–713 (2022)

    Article  Google Scholar 

  7. K.V. Madhuri, B.S. Naidu, O.M. Hussain, M. Eddrief, C. Julien, Physical investigations on electron beam evaporated V2O5–MoO3 thin films. Mater. Sci. Eng. B 86(2), 165–171 (2001)

    Article  Google Scholar 

  8. I.V. Volokhov, S.A. Gurin, I.R. Vergazov, Study of the properties of high-sensitivity thermally-stable thin-film resistance strain gauges for integral pressure sensors. Meas. Tech. 59(1), 80–86 (2016)

    Article  Google Scholar 

  9. L.I. Maissel, R. Glang, P.P. Budenstein, Handbook of thin film technology. J. Electrochem. Soc. Electrochem. Soc. 118(4), 114 (1971)

    Article  ADS  Google Scholar 

  10. F.F. Vidor, T. Meyers, U. Hilleringmann, Flexible electronics: integration processes for organic and inorganic semiconductor-based thin-film transistors. Electronics 4(3), 480–506 (2015)

    Article  CAS  Google Scholar 

  11. M. Jayalakshmi, M.M. Rao, N. Venugopal, K.B. Kim, Hydrothermal synthesis of SnO2–V2O5 mixed oxide and electrochemical screening of carbon nano-tubes (CNT), V2O5, V2O5–CNT, and SnO2–V2O5–CNT electrodes for supercapacitor applications. J. Power Sour. 166(2), 578–583 (2007)

    Article  ADS  CAS  Google Scholar 

  12. S.G. Beke, L. Korosi, L. Nanai, W. Marine, Structural and optical properties of pulsed laser deposited V2O5 thin films. Thin Solid Films 516(15), 4659–4664 (2007)

    Article  ADS  Google Scholar 

  13. C. Lamsal and N.M. Ravindra, Vanadium oxides: synthesis, properties, and applications, In Semiconductors: Synthesis, Properties and Applications, Cham: Springer International Publishing, 127–218 (2019)

  14. Si. Wenzhe, H. Liu, T. Yan, H. Wang, C. Fan, S. Xiong, Z. Zhao, Y. Peng, J. Chen, J. Li, Sn-doped rutile TiO2 for vanadyl catalysts: Improvements on activity and stability in SCR reaction. Appl. Catal. BCatal. B 269, 118797 (2020)

    Article  Google Scholar 

  15. J. Shi, J. Chen, S. Xiong, J. Mi, H. Liu, Z. Wang, H. Liu, J. Wang, J. Li, Structure-directing role of support on HgO oxidation over V2O5/TiO2 catalyst revealed for NOx and HgO simultaneous control in an SCR reactor. Environ. Sci. Technol. 56(13), 9702–9711 (2022)

    Article  ADS  PubMed  CAS  Google Scholar 

  16. R.B. Darling, S. Iwanaga, Structure, properties, and MEMS and microelectronic applications of vanadium oxides. Sadhana 34, 531–542 (2009)

    Article  CAS  Google Scholar 

  17. S. Wang, Yu. Shifeng, Lu. Ming, M. Liu, L. Zuo, Atomic layer-deposited titanium-doped vanadium oxide thin films and their thermistor applications. J. Electron. Mater. 46, 2153–2157 (2017)

    Article  ADS  CAS  Google Scholar 

  18. J.R. Skuza, D.W. Scott, R.M. Mundle, A.K. Pradhan, Electro-thermal control of aluminum-doped zinc oxide/vanadium dioxide multilayered thin films for smart-device applications. Sci. Rep. 6(1), 21040 (2016)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  19. M.F. Zia, M. Abdel-Rahman, M. Alduraibi, B. Ilahi, E. Awad, S. Majzoub, Electrical and infrared optical properties of vanadium oxide semiconducting thin-film thermometers. J. Electron. Mater. 46, 5978–5985 (2017)

    Article  ADS  CAS  Google Scholar 

  20. M.M. Latif, F. Amin, M. Ajaz-un-Nabi, I.U. Khan, N. Sabir, Synthesis and antimicrobial activities of manganese (Mn) and iron (Fe) Co-Doped cerium dioxide (CeO2) Nanoparticles. Phys. B Condensed Matter. 1(600), 412562 (2021)

    Article  Google Scholar 

  21. A. Ali, H. Zafar, M. Zia, I. ul Haq, A.R. Phull, J.S. Ali, A. Hussain, Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 19, 49–67 (2016)

    Article  Google Scholar 

  22. A.M. Chornous, Y.O. Shkurdoda, V.B. Loboda, Y.M. Shabelnyk, V.O. Kravchenko, Influence of the surface morphology on the magnetoresistance of ultrathin films of ferromagnetic metals and their alloys. Eur. Phys. J. Plus. 132, 1–5 (2017)

    Article  CAS  Google Scholar 

  23. W. Cherif, J.A. Alonso, F. Elhalouani, Evolution of in Fe-doped manganites synthesized by the ball-milling method. Eur. Phys. J. Plus 132, 1–10 (2017)

    Article  CAS  Google Scholar 

  24. L.R. Leal, Y. Guerra, E. Padrón-Hernández, A.R. Rodrigues, F.E. Santos, R. Peña-Garcia, Structural and magnetic properties of yttrium iron garnet nanoparticles doped with copper obtained by sol gel method. Mater. Lett. 1(236), 547–549 (2019)

    Article  Google Scholar 

  25. A. Ghaderi, S.M. Elahi, S. Solaymani, M. Naseri, M. Ahmadirad, S. Bahrami, A.E. Khalili, Thickness dependence of the structural and electrical properties of ZnO thermal-evaporated thin films. Pramana 77, 1171–1178 (2011)

    Article  ADS  CAS  Google Scholar 

  26. M.W. Pyun, E.J. Kim, D.H. Yoo, S.H. Hahn, Oblique angle deposition of TiO2 thin films prepared by electron-beam evaporation. Appl. Surf. Sci. 257(4), 1149–1153 (2010)

    Article  ADS  CAS  Google Scholar 

  27. D. Suthar, P.S.L. Himanshu, S. Chander, M.D. Kannan, M.S. Dhaka, Thickness and annealing evolution to physical properties of e-beam evaporated ZnTe thin films as a rear contact for CdTe solar cells. J. Mater. Sci. Mater. Electron. 32, 19070–19082 (2021)

    Article  CAS  Google Scholar 

  28. M.F. Hossain, M.A. Nahid, M.S. Pervez, M.A. Islam, Semiconductor behavior and room temperature ferromagnetism in e-beam evaporated Co/TiO 2 multilayer thin films. Phys. Solid State 61, 1363–1369 (2019)

    Article  ADS  CAS  Google Scholar 

  29. S. Jena, R.B. Tokas, S. Thakur, N.K. Sahoo, Optical properties of electron beam evaporated ZrO2: 10% SiO2 thin films: dependence on structure. Indian J. Phys. 90, 951–957 (2016)

    Article  ADS  CAS  Google Scholar 

  30. T.R. Chand, H.M. Kalpana, H.S. Lalithamba, Green synthesis, characterization and electrical properties of iron doped vanadium oxide for strain gauges, J. Mines Metals Fuels, 70, (2022)

  31. M. Raghavendra, K.V. Yatish, H.S. Lalithamba, Plant-mediated green synthesis of ZnO nanoparticles using Garcinia gummi-gutta seed extract: photoluminescence, screening of their catalytic activity in antioxidant, formylation and biodiesel production. Eur. Phys. J. Plus 132(8), 1–12 (2017)

    Article  CAS  Google Scholar 

  32. O. Kazuya, T. Haraguchi, O. Sakata, A. Fujiwara, H. Kitagawa, Step-by-step fabrication of a highly oriented crystalline three-dimensional pillared-layer-type metal–organic framework thin film confirmed by synchrotron X-ray diffraction. J. Am. Chem. Soc. 134(23), 9605–9608 (2012)

    Article  Google Scholar 

  33. Y.S. Thakur, A.D. Acharya, S. Sharma, S.S. Manhas, Synthesis and characterization of PANI doped V2O5 nanocomposites for supercapacitor application. Materials Today: Proceedings. (2023)

  34. C. Chaitra, H.M. Kalpana, C.M. Ananda, H.S. Lalithamba, Green synthesis of tin oxide based nanoparticles using Terminalia bellirica seed extract: impact of operating temperature and antimony dopant on sensitivity for carbon dioxide gas sensing application. Mater. Technol. 37(12), 2339–2346 (2022)

    Article  ADS  CAS  Google Scholar 

  35. K. Saminathan, V. Kamavaram, V. Veedu, A.M. Kannan, Preparation and evaluation of electrodeposited platinum nanoparticles on in situ carbon nanotubes grown carbon paper for proton exchange membrane fuel cells. Int. J. Hydrog. Energy 34(9), 3838–3844 (2009)

    Article  CAS  Google Scholar 

  36. W. Yong, H.L. Zhang, H.T. Cao, T. Tian, J.H. Gao, L.Y. Liang, F. Zhuge, Effect of post-annealing on structural and electrochromic properties of Mo-doped V2O5 thin films. J. Sol-Gel Sci. Technol. 77, 604–609 (2016)

    Article  CAS  Google Scholar 

  37. D.S.Charles, and X. Teng, Vanadium pentoxide (V2O5) electrode for aqueous energy storage: understand ionic transport using electrochemical, X-Ray, and Computational Tools, Alkali-Ion Batteries, (2016)

  38. C.D. Jadhav, B. Pandit, S.S. Karade, B.R. Sankapal, P.G. Chavan, Enhanced field emission properties of V2O5/MWCNTs nanocomposite. Appl. Phys. A 124, 1–8 (2018)

    Article  CAS  Google Scholar 

  39. C. Ko, Z. Yang, S. Ramanathan, Work function of vanadium dioxide thin films across the metal-insulator transition and the role of surface nonstoichiometry. ACS Appl. Mater. Interfaces 3(9), 3396–3401 (2011)

    Article  PubMed  CAS  Google Scholar 

  40. V.S. Shrivathsa, S.S. Shetty, S. Bhat, A. Jayarama, R. Pinto, Effect of precursor dilution solvents on the growth of V2O5 thin films using spray pyrolysis. Mater. Today Proceed. 1(66), 2499–2503 (2022)

    Google Scholar 

  41. H. Dhoundiyal, P. Das, M.C. Bhatnagar, Synthesis of V2O5 nanostructures and electrical transport properties of V2O5 nanoparticle. Mater. Today Proceed. 26, 2830–2832 (2020)

    Article  CAS  Google Scholar 

  42. Y. Sun, K. Schouteden, M. Recaman Payo, J.P. Locquet, J.W. Seo, Growth and characterization of ultrathin vanadium oxide films on HOPG. Nanomaterials 12(18), 3134 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. F. Ureña-Begara, A. Crunteanu, J.-P. Raskin, Raman and XPS characterization of vanadium oxide thin films with temperature. Appl. Surf. Sci. 403, 717–727 (2017)

    Article  ADS  Google Scholar 

  44. S. Beke, L. Kőrösi, S. Papp, A. Oszkó, L. Nánai, XRD and XPS analysis of laser treated vanadium oxide thin films. Appl. Surf. Sci. 255(24), 9779–9782 (2009)

    Article  ADS  CAS  Google Scholar 

  45. Q.H. Wu, A. Thissen, W. Jaegermann, M. Liu, Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface. Appl. Surf. Sci. 236(1–4), 473–478 (2004)

    Article  ADS  CAS  Google Scholar 

  46. V. Jain, D. Shah, K. Patel, Study of vanadium pentoxide thin film prepared by spin coating method. Mater. Today Proceed. 1(48), 706–708 (2022)

    Article  Google Scholar 

  47. G.T. Mola, E.A. Arbab, B.A. Taleatu, K. Kaviyarasu, I. Ahmad, M. Maaza, Growth and characterization of V2O5 thin film on conductive electrode. J. Microsc. 265(2), 214–221 (2017)

    Article  PubMed  CAS  Google Scholar 

  48. V. Amiri, H. Roshan, A. Mirzaei, M.H. Sheikhi, A review of nanostructured resistive-based vanadium oxide gas sensors. Chemosensors. 8(4), 105 (2020)

    Article  CAS  Google Scholar 

  49. H.M. Kalpana, V.S. Prasad, T.N. Satish, Effect of annealing on hardness and elastic modulus of invar36 thin films deposited by direct current sputtering for strain gauge applications. Int. J. Thin. Fil. Sci. Tec. 8(3), 119–129 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to, “Siddaganga institute of technology” Tumakuru-572103, Karnataka, India, for supporting this research work. They thank, “IISC” Bengaluru-570023, Karnataka, India, in providing laboratory facilities for characterization.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Kalpana.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chand, T.R.K., Kalpana, H.M. Study on influence of thickness and annealing on electrical characteristics of iron-doped vanadium oxide (Fe:V2O5) thin films for sensor application. Eur. Phys. J. Plus 139, 233 (2024). https://doi.org/10.1140/epjp/s13360-024-05037-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05037-x

Navigation