Skip to main content
Log in

The role of the surface passivation in the mechanical properties of wurtzite InAs and InP nanowires: first-principles calculations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the effect of surface passivation on the mechanical properties of InAs and InP nanowires (NWs) as a function of diameter using density-functional theory. The unpassivated and pseudohydrogen-passivated NWs are aligned along the [0001] direction of the wurtzite structure and have diameters ranging from 1 to 3 nm, approximately. The equilibrium lattice parameters of the NWs are seen to decrease with decreasing diameter, this reduction being more pronounced for the unpassivated NWs. Moreover, for similar diameters, the equilibrium lattice parameters of the unpassivated NWs, due to the radial expansion of As/P atoms on the surface region, are smaller than that for the pseudohydrogen-passivated NWs. The Young’s modulus of the unpassivated InAs and InP NWs increases as the diameter decreases while that for the pseudohydrogen-passivated NWs an opposite trend was observed. The Poisson’s ratio of the studied NWs, on the other hand, increases with decreasing diameters, and the calculated values for this quantity are almost three times larger for the unpassivated NWs when compared to that of the pseudohydrogen-passivated NWs. This shows that the surface passivation in [0001] WZ InAs and InP NWs has a crucial role in the understanding of the mechanical properties of these systems at nanometric sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: All data generated during this study are contained in this published article.]

References

  1. M. Yao, S. Cong, S. Arab, N. Huang, M.L. Povinelli, S.B. Cronin, P.D. Dapkus, C. Zhou, Nano Lett. 15, 7217 (2015)

    Article  ADS  Google Scholar 

  2. A. Konar, J. Mathew, K. Nayak, M. Bajaj, R.K. Pandey, S. Dhara, K.V.R.M. Murali, M.M. Deshmukh, Nano Lett. 15, 1684 (2015)

    Article  ADS  Google Scholar 

  3. L.-F. Shen, S. Yip, Z.-X. Yang, M. Fang, T. Hung, E.Y.B. Pun, J.C. Ho, Sci. Rep. 5, 16871 (2015)

    Article  ADS  Google Scholar 

  4. I. Åberg, G. Vescovi, D. Asoli, U. Naseem, J.P. Gilboy, C. Sundvall, A. Dahlgren, K.E. Svensson, N. Anttu, M.T. Björk, L. Samuelson, IEEE J. Photovolt. 6, 185 (2016)

    Article  Google Scholar 

  5. A. Berg, S. Yazdi, A. Nowzari, K. Storm, V. Jain, N. Vainorius, L. Samuelson, J.B. Wagne, M.T. Borgström, Nano Lett. 16, 656 (2016)

    Article  ADS  Google Scholar 

  6. C. Li, S. Liu, T.S. Luk, J.J. Figiel, I. Brener, S.R.J. Brueck, G.T. Wang, Nanoscale 8, 5682 (2016)

    Article  ADS  Google Scholar 

  7. J. Valente, T. Godde, Y. Zhang, D.J. Mowbray, H. Liu, Nano Lett. 18, 4206 (2018)

    Article  ADS  Google Scholar 

  8. A.D. Giddings, P. Ramvall, T. Vasen, A. Afzalian, R.-L. Hwang, Y.-C. Yeo, M. Passlack, ACS Appl. Nano Mater. 2, 1253 (2019)

    Article  Google Scholar 

  9. A.C. Campos, S.C. Paes, B.S. Correa, G.A. Cabrera-Pasca, M.S. Costa, C.S. Costa, L. Otubo, A.W. Carbonari, ACS Appl. Nano Mater. 3, 175 (2020)

    Article  Google Scholar 

  10. A. Jönsson, J. Svensson, E.M. Fiordaliso, E. Lind, M. Hellenbrand, L.-E. Wernersson, ACS Appl. Electron. Mater. 3, 5240 (2021)

    Article  Google Scholar 

  11. I. Verma, S. Salimian, V. Zannier, S. Heun, F. Rossi, D. Ercolani, F. Beltram, L. Sorba, ACS Appl. Nano Mater. 4, 5825 (2021)

    Article  Google Scholar 

  12. S. Wang, Z. Shan, H. Huang, Adv. Sci. 4, 1600332 (2017)

    Article  Google Scholar 

  13. H. Ni, X.D. Li, Nanotechnology 17, 3591 (2006)

    Article  ADS  Google Scholar 

  14. C.Q. Chen, Y. Shi, Y.S. Zhang, J. Zhu, Y.J. Yan., Phys. Rev. Lett. 96, 075505 (2006)

    Article  ADS  Google Scholar 

  15. B. Wang, J. Zhao, J. Jia, D. Shi, J. Wan, G. Wang, Appl. Phys. Lett. 93, 021918 (2008)

    Article  ADS  Google Scholar 

  16. J. Qi, D. Shi, B. Wang, Comput. Mater. Sci. 46, 303 (2009)

    Article  Google Scholar 

  17. G.Y. Jing, X.Z. Zhang, D.P. Yu, Appl. Phys. a Mater. Sci. Process. 100, 473 (2010)

    Article  ADS  Google Scholar 

  18. A. Roy, J. Mead, S. Wang, H. Huang, Sci. Rep. 7, 9547 (2017)

    Article  ADS  Google Scholar 

  19. X. Jiang, J. Zhao, X. Jiang, Nanotechnology 22, 405705 (2011)

    Article  ADS  Google Scholar 

  20. F. Salazar, L.A. Pérez, Comput. Mater. Sci. 63, 47 (2012)

    Article  Google Scholar 

  21. A.J. Lee, M. Kim, C. Lena, J.R. Chelikowsky, Phys. Rev. B 86, 115331 (2012)

    Article  ADS  Google Scholar 

  22. L. Ma, J. Wang, J. Zhao, G. Wang, Chem. Phys. Lett. 452, 183 (2008)

    Article  ADS  Google Scholar 

  23. P.W. Leu, A. Svizhenko, K. Cho, Phys. Rev. B 77, 235305 (2008)

    Article  ADS  Google Scholar 

  24. T. Tsuchiya, T. Hemmi, J.-Y. Suzuki, Y. Hirai, O. Tabata, Appl. Sci. 8, 880 (2018)

    Article  Google Scholar 

  25. J.B. Oliveira, J.M. Morbec, R.H. Miwa, J. Appl. Phys. 121, 104302 (2017)

    Article  ADS  Google Scholar 

  26. G. Wang, X. Li, J. Appl. Phys. 104, 113517 (2008)

    Article  ADS  Google Scholar 

  27. Y. Chen, T. Burgess, X. An, Y.-W. Mai, H.H. Tan, J. Zou, S.P. Ringer, C. Jagadish, X. Liao, Nano Lett. 16, 1911 (2016)

    Article  ADS  Google Scholar 

  28. H. Chen, D. Shi, J. Qi, B. Wang, Physica E 42, 32 (2009)

    Article  ADS  Google Scholar 

  29. M. Lexholm, I. Karlsson, F. Boxberg, D. Hessman, Appl. Phys. Lett. 95, 113103 (2009)

    Article  ADS  Google Scholar 

  30. S.O. Mariager, D. Khakhulin, H.T. Lemke, K.S. Kjaer, L. Guerin, L. Nuccio, C.B. Sørensen, M.M. Nielsen, R. Feidenhans’l, Nanoletters 10, 2461 (2010)

    Article  ADS  Google Scholar 

  31. R. Erdélyi, M.H. Madsen, G. Sáfrán, Z. Hajnal, I.E. Lukács, G. Fülöp, S. Csonka, J. Nygard, J. Volk, Solid State Commun. 152, 1829 (2012)

    Article  ADS  Google Scholar 

  32. X. Li, X.L. Wei, T.T. Xu, Z.Y. Ning, J.P. Shu, X.Y. Wang, D. Pan, J.H. Zhao, T. Yang, Q. Chen, Appl. Phys. Lett. 104, 103110 (2014)

    Article  ADS  Google Scholar 

  33. C.L. dos Santos, P. Piquini, Phys. Rev. B 81, 075408 (2010)

    Article  ADS  Google Scholar 

  34. M. Gandolfi, S. Peli, M. Diego, S. Danesi, C. Giannetti, I. Alessandri, V. Zannier, V. Demontis, M. Rocci, F. Beltram, L. Sorba, S. Roddaro, F. Rossella, F. Banfi, Phys. Chem. C 126, 6361 (2022)

    Article  Google Scholar 

  35. M. Dunaevskiy, P. Geydt, E. Lähderanta, P. Alekseev, T. Haggrén, J.-P. Kakko, H. Jiang, H. Lipsanen, Nano Lett. 17, 3441 (2017)

    Article  ADS  Google Scholar 

  36. Z. Liu, I. Papadimitriou, M. Castillo-Rodríguez, C. Wang, G. Esteban-Manzanares, X. Yuan, H.H. Tan, J.M. Molina-Aldareguía, J. Llorca, Nano Lett. 19, 4490 (2019)

    Article  ADS  Google Scholar 

  37. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)

    Article  ADS  Google Scholar 

  38. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  39. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  40. G. Kresse, J. Furthmüller, Phys. Rev. B. 54, 11169 (1996)

    Article  ADS  Google Scholar 

  41. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  42. D.M. Ceperley, B.J. Alder, Phys. Rev. Lett. 45, 566 (1980)

    Article  ADS  Google Scholar 

  43. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  44. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  45. P. Caroff, K.A. Dick, J. Johansson, M.E. Messing, K. Deppert, L. Samuelson, Nature Nanotech. 4, 50 (2009)

    Article  ADS  Google Scholar 

  46. J. Johansson, K.A. Dick, P. Caroff, M.E. Messing, J. Bolinsson, K. Deppert, L. Samuelson, J. Phys. Chem. C 114, 3837 (2010)

    Article  Google Scholar 

  47. D. Pan, M. Fu, X. Yu, X. Wang, L. Zhu, S. Nie, S. Wang, Q. Chen, P. Xiong, S. von Molnár, J. Zhao, Nano Lett. 14, 1214 (2014)

    Article  ADS  Google Scholar 

  48. T. Akiyama, K. Sano, K. Nakamura, T. Ito, Jpn. J. Appl. Phys. 45, L275 (2006)

    Article  ADS  Google Scholar 

  49. M. Rossini, R. Magri, ACS Nano 4, 6021 (2010)

    Article  Google Scholar 

  50. Pseudo hydrogen atoms have fractional charges chosen to mimic the charges at bondings in a bulk system. For example, the charges for pseudo-H atoms bonded to In (As) atoms should be 1.25 (0.75) instead of 1.0 for real H atoms

  51. V.M. Goldschmidt, Ber. Dtsch. Chem. Ges. 60, 1270 (1927)

    Article  Google Scholar 

  52. L. Pauling, J. Am. Chem. Soc. 69, 542 (1947)

    Article  Google Scholar 

  53. C.Q. Sun, Phys. Rev. B 69, 045105 (2004)

    Article  ADS  Google Scholar 

  54. S. Peli, A. Ronchi, G. Bianchetti, F. Rossella, C. Giannetti, M. Chiari, P. Pingue, F. Banfi, G. Ferrini, Sci. Rep. 10, 16230 (2020)

    Article  ADS  Google Scholar 

  55. A. Ronchi, A. Sterzi, M. Gandolfi, A. Belarouci, C. Giannetti, N. Del Fatti, F. Banfi, G. Ferrini, Ultrasonics 114, 106403 (2021)

    Article  Google Scholar 

  56. X. Zhang, X. Yao, Z. Li, C. Zhou, X. Yuan, Z. Tang, W. Hu, X. Gan, J. Zou, P. Chen, W. Lu, J. Phys. Chem. Lett. 11, 6413 (2020)

    Article  Google Scholar 

  57. V. Khayrudinov, M. Remennyi, V. Raj, P. Alekseev, B. Matveev, H. Lipsanen, T. Haggren, ACS Nano 14, 7484 (2020)

    Article  Google Scholar 

  58. H. Sumikura, G. Zhang, M. Takiguchi, N. Takemura, A. Shinya, H. Gotoh, M. Notomi, Nano Lett. 19, 8059 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The calculations were performed at the Centro Nacional de Processamento de Alto Desempenho, CENAPAD/Campinas, Brazil. The authors acknowledge financial support from the Brazilian agency FAPERGS and Universidade Franciscana (UFN).

Author information

Authors and Affiliations

Authors

Contributions

All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Cláudia Lange dos Santos.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassotto, L.C., da Silva, I.Z. & dos Santos, C.L. The role of the surface passivation in the mechanical properties of wurtzite InAs and InP nanowires: first-principles calculations. Eur. Phys. J. Plus 137, 1113 (2022). https://doi.org/10.1140/epjp/s13360-022-03329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03329-8

Navigation