Skip to main content
Log in

Long-time behavior of macroscopic quantum systems

Commentary accompanying the English translation of John von Neumann’s 1929 article on the quantum ergodic theorem

  • Regular Article
  • Published:
The European Physical Journal H Aims and scope Submit manuscript

Abstract

The renewed interest in the foundations of quantum statistical mechanics in recent years has led us to study John von Neumann’s 1929 article on the quantum ergodic theorem. We have found this almost forgotten article, which until now has been available only in German, to be a treasure chest, and to be much misunderstood. In it, von Neumann studied the long-time behavior of macroscopic quantum systems. While one of the two theorems announced in his title, the one he calls the “quantum H-theorem”, is actually a much weaker statement than Boltzmann’s classical H-theorem, the other theorem, which he calls the “quantum ergodic theorem”, is a beautiful and very non-trivial result. It expresses a fact we call “normal typicality” and can be summarized as follows: for a “typical” finite family of commuting macroscopic observables, every initial wave function ψ0 from a micro-canonical energy shell so evolves that for most times t in the long run, the joint probability distribution of these observables obtained from ψ t is close to their micro-canonical distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  2. V. Bach, J. Fröhlich, I.M. Sigal, Return to equilibrium, J. Math. Phys. 41, 3985 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. C. Bartsch, J. Gemmer, Dynamical typicality of quantum expectation values, Phys. Rev. Lett. 102, 110403 (2009)

    Article  ADS  Google Scholar 

  4. G.D. Birkhoff, Proof of the ergodic theorem, Proceedings of the National Academy of Science USA 17, 656 (1931)

    Article  ADS  Google Scholar 

  5. P. Bocchieri, A. Loinger, Ergodic Theorem in Quantum Mechanics, Phys. Rev. 111, 668 (1958)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. P. Bocchieri, A. Loinger, Ergodic Foundation of Quantum Statistical Mechanics, Phys. Rev. 114, 948 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  7. P. Bocchieri, G.M. Prosperi, Recent Developments in Quantum Ergodic Theory, in: Statistical Mechanics, Foundations and Applications, edited by T.A. Bak, Proceedings of the IUPAP Meeting, Copenhagen, 1966 (Benjamin, 1967)

  8. L. Boltzmann, Vorlesungen über Gastheorie(Leipzig, Barth, 1896, 1898), 2 vols., English translation by S.G. Brush, Lectures on Gas Theory(Cambridge University Press, 1964)

  9. J. Bourgain, A remark on the uncertainty principle for Hilbertian basis, J. Funct. Anal. 79, 136 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. M.D. Choi, Almost commuting matrices need not be nearly commuting, Proceedings of the American Mathematical Society 102, 529 (1988)

    MATH  MathSciNet  Google Scholar 

  11. W. De Roeck, C. Maes, K. Netočný, Quantum Macrostates, Equivalence of Ensembles and an H-theorem, J. Math. Phys. 47, 073303 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  12. J.M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  13. A. Einstein, Beiträge zur Quantentheorie. Deutsche Physikalische Gesellschaft, Verhandlungen 16, 820 (1914)

    Google Scholar 

  14. I.E. Farquhar, Ergodic Theory in Statistical Mechanics(Interscience Publishers and John Wiley, 1964)

  15. I.E. Farquhar, P.T. Landsberg, On the quantum-statistical ergodic and H-theorems, Proceedings of the Royal Society London A 239, 134 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. M. Fierz, Ergodensatz in der Quantenmechanik, Helv. Phys. Acta 28, 705 (1955)

    MATH  MathSciNet  Google Scholar 

  17. M. Fierz, Statistische Mechanik, in Theoretical Physics in the 20th Century: A Memorial Volume to Wolfgang Pauli, edited by M. Fierz, V.F. Weisskopf (Interscience, New York, 1960), pp. 161–186

  18. S. Garnerone, T.R. d. Oliveira, P. Zanardi, Typicality in random matrix product states, Phys. Rev. A 81, 032336 (2010)

    Article  ADS  Google Scholar 

  19. J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics, Lecture Notes in Physics (Springer-Verlag, Berlin, 2004), Vol. 657

  20. S. Goldstein, Boltzmann’s approach to statistical mechanics, in Chance in Physics: Foundations and Perspectives, edited by J. Bricmont, D. Dürr, M.C. Galavotti, G.C. Ghirardi, F. Petruccione, N. Zanghì, Lecture Notes in Physics 574(Springer-Verlag, Berlin, 2001), pp. 39–54, http://arxiv.org/abs/cond-mat/0105242

  21. S. Goldstein, J.L. Lebowitz, On the (Boltzmann) Entropy of Nonequilibrium Systems, Physica D 193, 53 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. S. Goldstein, J.L. Lebowitz, C. Mastrodonato, R. Tumulka, N. Zanghì, Normal Typicality and von Neumann’s Quantum Ergodic Theorem, to appear in Proceedings of the Royal Society London A(2010), http://arxiv.org/abs/0907.0108

  23. S. Goldstein, J.L. Lebowitz, C. Mastrodonato, R. Tumulka, N. Zanghì, On the Approach to Thermal Equilibrium of Macroscopic Quantum Systems, Phys. Rev. E 81, 011109 (2010)

    Article  ADS  Google Scholar 

  24. S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghì, Canonical Typicality, Phys. Rev. Lett. 96, 050403 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghì, On the Distribution of the Wave Function for Systems in Thermal Equilibrium, J. Statist. Phys. 125, 1193 (2006)

    Article  MATH  ADS  Google Scholar 

  26. S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghì, Universal Probability Distribution for the Wave Function of an Open Quantum System, in preparation

  27. M.B. Hastings, Making Almost Commuting Matrices Commute, Commun. Math. Phys. 291, 321 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. M.B. Hastings, T.A. Loring, Almost Commuting Matrices, and Localized Wannier Functions, and the Quantum Hall Effect, J. Math. Phys. 51, 015214 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  29. V. Jakšić, C.-A. Pillet, On a model for quantum friction. II: Fermi’s golden rule and dynamics at positive temperature, Commun. Math. Phys. 176, 619 (1996)

    Article  MATH  ADS  Google Scholar 

  30. R. Jancel, Foundations of Classical and Quantum Statistical Mechanics(Pergamon, Oxford, 1969), Translation by W.E. Jones of R. Jancel: Les Fondements de la Mécanique Statistique Classique et Quantique(Gauthier-Villars, Paris, 1963)

  31. E.C. Kemble, Fluctuations, Thermodynamic Equilibrium and Entropy, Phys. Rev. 56, 1013 (1939)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. N.S. Krylov, Works on the foundations of statistical physics, with an afterword by Y. Sinai (University Press, Princeton, 1979)

  33. L.D. Landau, E.M. Lifshitz, Statistical Physics(Course of theoretical physics) (Pergamon, London, 1958), Vol. 5

  34. P.T. Landsberg, Pauli, an ergodic theorem and related matters, Am. J. Phys. 73, 119 (2005)

    Article  ADS  Google Scholar 

  35. O.E. Lanford, Entropy and Equilibrium States in Classical Statistical Mechanics, in Lecture Notes in Physics 2, edited by A. Lenard (Springer-Verlag, Berlin, 1973), pp. 1–113

  36. O.E. Lanford, Time evolution of large classical systems, in Lecture Notes in Physics 38, edited by J. Moser (Springer-Verlag, Berlin, 1975), pp. 1–111

  37. J.L. Lebowitz, Microscopic Origins of Irreversible Macroscopic Behavior: An Overview, Physica A 263, 516 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  38. J.L. Lebowitz, From Time-symmetric Microscopic Dynamics to Time-asymmetric Macroscopic Behavior: An Overview, in Boltzmann’s Legacy, edited by G. Gallavotti, W.L. Reiter, J. Yngvason (European Mathematical Society, Zürich, 2008), pp. 63–88, http://arxiv.org/abs/0709.0724

  39. J.L. Lebowitz, C. Maes, Entropy – A Dialogue, in On Entropy, edited by A. Greven, G. Keller, G. Warnecke (University Press, Princeton, 2003), pp. 269–273

  40. J.L. Lebowitz, H. Spohn, Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs, Adv. Chem. Phys. 38, 109 (1978)

    Article  Google Scholar 

  41. H. Lin, Almost commuting self-adjoint matrices and applications, Fields Institute Communications 13, 193 (1997)

    ADS  Google Scholar 

  42. N. Linden, S. Popescu, A.J. Short, A. Winter, Quantum mechanical evolution towards thermal equilibrium, Phys. Rev. E 79, 061103 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  43. G. Ludwig, Zum Ergodensatz und zum Begriff der makroskopischen Observablen. I, Z. Phys. 150, 346 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  44. G. Ludwig, Zum Ergodensatz und zum Begriff der makroskopischen Observablen. II, Z. Phys. 152, 98 (1958)

    Article  MATH  ADS  Google Scholar 

  45. G. Ludwig, Axiomatic Quantum Statistics of Macroscopic Systems (Ergodic Theory), in Physics School Enrico Fermi: Ergodic Theory(Academic Press, 1962), pp. 57–132

  46. M.C. Mackey, The dynamic origin of increasing entropy, Rev. Mod. Phys. 61, 981 (1989)

    Article  ADS  Google Scholar 

  47. Normal number, in Wikipedia, the free encyclopedia(accessed December 15, 2009), http://en.wikipedia.org/wiki/Normal_number

  48. V. Oganesyan, D.A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75, 155111 (2007)

    Article  ADS  Google Scholar 

  49. W. Pauli, in a letter to M. Fierz, dated 9 August 1956, quoted from

  50. W. Pauli, M. Fierz, Über das H-Theorem in der Quantenmechanik, Z. Phys. 106, 572 (1937)

    Article  MATH  ADS  Google Scholar 

  51. P. Pechukas, Sharpening an inequality in quantum ergodic theory, J. Math. Phys. 25, 532 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  52. S. Popescu, A.J. Short, A. Winter, Entanglement and the foundation of statistical mechanics, Nature Phys. 2, 754 (2006)

    Article  ADS  Google Scholar 

  53. G.M. Prosperi, A. Scotti, Ergodicity Conditions in Quantum Mechanics, J. Math. Phys. 1, 218 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  54. P. Reimann, Typicality for Generalized Microcanonical Ensembles, Phys. Rev. Lett. 99, 160404 (2007)

    Article  ADS  Google Scholar 

  55. P. Reimann, Foundation of Statistical Mechanics under Experimentally Realistic Conditions, Phys. Rev. Lett. 101, 190403 (2008)

    Article  ADS  Google Scholar 

  56. P. Reimann, Typicality of pure states randomly sampled according to the Gaussian adjusted projected measure, J. Stat. Phys. 132, 921 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. M. Rigol, V. Dunjko, M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008)

    Article  ADS  Google Scholar 

  58. D.W. Robinson, Return to equilibrium, Commun. Math. Phys. 31, 171 (1973)

    Article  MATH  ADS  Google Scholar 

  59. D. Ruelle, What physical quantities make sense in non-equilibrium statistical mechanics? In Boltzmann’s Legacy, edited by G. Gallavotti, W.L. Reiter, J. Yngvason (European Mathematical Society, Zürich, 2008), pp. 89–97

  60. E. Schrödinger, in a letter to J. von Neumann, dated 25 December 1929, published in E. Schrödinger, Eine Entdeckung von ganz außerordentlicher Tragweite, Schrödingers Briefwechsel zur Wellenmechanik und zum Katzenparadoxon,edited by K. von Meyenn (Springer, Berlin, 2010)

  61. E. Schrödinger, Energieaustausch nach der Wellenmechanik. Annalen der Physik 83, 956 (1927), English translation by J.F. Shearer, W.M. Deans, The Exchange of Energy according to Wave Mechanics, in E. Schrödinger: Collected Papers on Wave Mechanics, Providence, R.I.: AMS Chelsea (1982), pp. 137–146

  62. A. Serafini, O.C.O. Dahlsten, D. Gross, M.B. Plenio, Canonical and micro-canonical typical entanglement of continuous variable systems, J. Phys. A: Math. Theor. 40, 9551 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. Y. Sinai, Introduction to Ergodic Theory, Translated from the Russian by V. Scheffer (University Press, Princeton, 1976)

  64. M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994)

    Article  ADS  Google Scholar 

  65. H. Tasaki, From Quantum Dynamics to the Canonical Distribution: General Picture and a Rigorous Example, Phys. Rev. Lett. 80, 1373 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. R.C. Tolman, The Principles of Statistical Mechanics(University Press, Oxford, 1938)

  67. B. Vacchini, K. Hornberger, Quantum linear Boltzmann equation, Phys. Rep. 478, 71 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  68. L. van Hove, The approach to equilibrium in quantum statistics, Physica 23, 441 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  69. L. van Hove, The Ergodic Behaviour of Quantum Many-Body Systems, Physica 25, 268 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  70. J. von Neumann, Thermodynamik quantenmechanischer Gesamtheiten, Göttinger Nachrichten 273 (11 November 1927)

  71. J. von Neumann, Beweis des Ergodensatzes und des H-Theorems in der neuen Mechanik, Z. Phys. 57, 30 (1929)

    Article  Google Scholar 

  72. J. von Neumann, Proof of the Quasi-ergodic Hypothesis, Proceedings of the National Academy of Science USA 18, 70 (1932)

    Article  MATH  Google Scholar 

  73. J. von Neumann, Mathematische Grundlagen der Quantenmechanik(Springer-Verlag, Berlin, 1932), English translation by R.T. Beyer, published as J. von Neumann, Mathematical Foundation of Quantum Mechanics(University Press, Princeton, 1955)

  74. E.P. Wigner, Random Matrices in Physics, SIAM Rev. 9, 1 (1967)

    Article  MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Goldstein, J. L. Lebowitz, R. Tumulka or N. Zanghì.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldstein, S., Lebowitz, J., Tumulka, R. et al. Long-time behavior of macroscopic quantum systems. EPJ H 35, 173–200 (2010). https://doi.org/10.1140/epjh/e2010-00007-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjh/e2010-00007-7

Keywords

Navigation