Skip to main content
Log in

Making Almost Commuting Matrices Commute

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Suppose two Hermitian matrices A, B almost commute (\({\Vert [A,B] \Vert \leq \delta}\)). Are they close to a commuting pair of Hermitian matrices, A′, B′, with \({\Vert A-A' \Vert,\Vert B-B'\Vert \leq \epsilon}\) ? A theorem of H. Lin [3] shows that this is uniformly true, in that for every \({\epsilon > 0}\) there exists a δ > 0, independent of the size N of the matrices, for which almost commuting implies being close to a commuting pair. However, this theorem does not specify how δ depends on \({\epsilon}\) . We give uniform bounds relating δ and \({\epsilon}\) . The proof is constructive, giving an explicit algorithm to construct A′ and B′. We provide tighter bounds in the case of block tridiagonal and tridiagonal matrices. Within the context of quantum measurement, this implies an algorithm to construct a basis in which we can make a projective measurement that approximately measures two approximately commuting operators simultaneously. Finally, we comment briefly on the case of approximately measuring three or more approximately commuting operators using POVMs (positive operator-valued measures) instead of projective measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rosenthal P.R.: Are almost commuting matrices near commuting pairs?. AMS Monthly 76, 925 (1969)

    Article  Google Scholar 

  2. Halmos P.R.: Some unsolved problems of unknown depth about operators on Hilbert space. Proc. Roy. Soc. Edinburgh A 76, 67 (1976)

    MathSciNet  Google Scholar 

  3. Lin H.: Almost commuting self-adjoint matrices and applications. Fields. Inst. Commun. 13, 193 (1995)

    Google Scholar 

  4. Friis P., Rordam M.: Almost commuting self-adjoint matrices—a short proof of Huaxin Lin’s theorem. J. Reine Angew. Math. 479, 121 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Voiculescu D.: Asymptotically commuting finite rank unitaries without commuting approximants. Acta Sci. Math. 451, 429 (1983)

    MathSciNet  Google Scholar 

  6. Voiculescu D.: Remarks on the singular extension in the C*-algebra of the Heisenberg group. J. Op. Thy. 5, 147 (1981)

    MATH  MathSciNet  Google Scholar 

  7. Davidson K.R.: Almost commuting Hermitian matrices. Math. Scand. 56, 222 (1985)

    MATH  MathSciNet  Google Scholar 

  8. Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hastings M.B.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  10. Hastings M.B., Koma T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265, 781 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Nachtergaele B., Sims R.: Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 119 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Demko S., Moss W.F., Smith P.W.: Decay rates for inverses of band matrices. Math. Comp. 43, 491 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  13. Benzi M., Golub G.H.: Bounds for the entries of matrix functions with applications to preconditions. BIT 39, 417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hastings M.B.: Locality in quantum and Markov dynamics on lattices and networks. Phys. Rev. Lett. 93, 140402 (2004)

    Article  ADS  Google Scholar 

  15. Cramer M., Dawson C.M., Eisert J., Osborne T.J.: Exact relaxation in a class of nonequilibrium lattice systems. Phys. Rev. Lett. 100, 030602 (2008)

    Article  ADS  Google Scholar 

  16. Eisert J., Osborne T.J.: General entanglement scaling laws from time evolution. Phys. Rev. Lett. 97, 150404 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  17. Bravyi S., Hastings M.B., Verstraete F.: Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006)

    Article  ADS  Google Scholar 

  18. Osborne, T.J.: A renormalization-group algorithm for eigenvalue density functions of interacting quantum systems. http://arXiv.org/abs/cond-mat/0605194v1[cond-mat.str-el], 2006

  19. Osborne T.J.: Efficient approximation of the dynamics of one-dimensional quantum spin systems. Phys. Rev. Lett. 97, 157202 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Hastings M.B.: Quantum belief propagation. Phys. Rev. B Rapids 76, 201102 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  21. Osborne T.J.: Efficient approximation of the dynamics of one-dimensional quantum spin systems. Phys. Rev. A 75, 042306 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Hastings M.B.: Observations outside the light-cone: algorithms for non-equilibrium and thermal states. Phys. Rev. B 77, 144302 (2008)

    Article  ADS  Google Scholar 

  23. Hastings, M.B.: An area law for one dimensional quantum systems. J. Stat. Mech., P08024 (2007)

  24. Nachtergaele B., Raz H., Schlein B., Sims R.: Lieb-Robinson bounds for harmonic and anharmonic lattice systems. Commun. Math. Phys. 286, 1073–1098 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Hastings, M.B.: Quasi-Adiabatic continuation in gapped spin and fermion systems: goldstone’s theorem and flux periodicity. J. Stat. Mech. P05010 (2007)

  26. Carmona R., Klein A., Martinelli F.: Anderson localization for Bernoulli and other singular potentials. Commun. Math. Phys. 108, 41 (1987)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. von Dreifus, H., Klein, A.: A new proof of localization in the Anderson tight binding model. Commun. Math. Phys. 124, 285 (1989); Shubin, C., Vakilian, R., Wolff, T.: Some harmonic analysis questions suggested by Anderson-Bernoulli models. Geom. Funct. Anal. 8, 932 (1998)

    Google Scholar 

  28. Jordan C.: Essai sur la géométrie à n dimensions. Bulletin de la S. M. F. 3, 103 (1875)

    Google Scholar 

  29. Gervais, R., Rahman, Q.I., Schmeisser, G.: A bandlimited function simulating a duration-limited one. In: Anniversary volume on approximation theory and functional analysis, Schiftenreihe Numer. Math., Basel: Birkhäuser, 1984, pp. 355–362

  30. Strohmer, T., Tanner, J.: Implementations of Shannon’s sampling theorem, a time-frequency approach. Sampling Thy. in Signal and Image Proc., 4, 1 (2005); Fritz John: Partial Differential Equations. New York: Springer-Verlag, 1991

  31. Hastings, M.B.: Topology and phases in fermionic systems. J. Stat. Mech. L01001 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Hastings.

Additional information

Communicated by A. Connes

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hastings, M.B. Making Almost Commuting Matrices Commute. Commun. Math. Phys. 291, 321–345 (2009). https://doi.org/10.1007/s00220-009-0877-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-009-0877-2

Keywords

Navigation