Skip to main content
Log in

Particle shape effect on the structural evolution and force propagation inside the three-dimensional sandpile

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

This paper employs the discrete element method to examine the impact of particle shape on the pressure dip phenomenon and structural characterization of the three-dimensional sandpiles. Particular attention has been given to the underlying mechanism in the sandpile, which arises from the interplay of the initial created structure and the induced changes in the subsequent deposition process. Different aspect ratios produced different initial local geometry. The contact vector and strong contact force rotated away from the z-axis when the aspect ratio deviates from 1.0. The flat particles had a better memory of initial structures under the subsequent deposition process, which plays a vital role in force transmission and stress propagation. However, when the aspect ratio approaches 1.0, the stress state behaves as a joint result of maintained and gained contacts. For a certain range of aspect ratios, the newly generated interactions of elongated particles induced the major stress in the horizontal plane, which thus produces a significant pressure dip phenomenon. The results indicated that complex models accounting for contact creation are required to capture the pressure profile.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. P. Richard, M. Nicodemi, R. Delannay, P. Ribiere, D. Bideau, Slow relaxation and compaction of granular system. Nat. Mater. 4(2), 121–128 (2005)

    ADS  Google Scholar 

  2. X. Gao, J. Yu, J.F. Ricardo, J.F. Dietike, M. Shahnam, W.A. Rogers, Development and validation of SuperDEM for non-spherical particulate systems using a superquadric particle method. Particuology 61, 74–90 (2021)

    Google Scholar 

  3. Y. Fan, Y. Boukerkour, T. Blanc, P.B. Umbanhowar, J.M. Ottino, R.M. Lueptow, Stratification, segregation, and mixing of granular materials in quasi-two-dimensional bounded heaps. Phys. Rev. E 86, 051305 (2012)

    ADS  Google Scholar 

  4. H.A. Makse, S. Havlin, P.R. King, H.E. Stanley, Spontaneous stratification in granular mixtures. Nature 386, 379–382 (1997)

    ADS  Google Scholar 

  5. F.H. Hummel, E.J. Finnan, The distribution of pressure on surfaces supporting a mass of granular material. Proc. Inst. Civ. Eng. 212, 369–392 (1920)

    Google Scholar 

  6. B. Brockbank, J. Huntley, R. Ball, Contact force distribution beneath a three-dimensional granular pile. J. Phys. II EDP Sci. 7(10), 1521–1532 (1997)

    Google Scholar 

  7. H.-G. Matuttis, Simulation of the pressure dip phenomenon under a two-dimensional heap of polygonal particles. Granul. Matter 1, 83–91 (1998)

    Google Scholar 

  8. I. Zuriguel, T. Mullin, J.M. Rotter, Effect of particle shape on the stress dip under a sandpile. Phys. Rev. Lett. 98(2), 028001–028004 (2007)

    ADS  Google Scholar 

  9. I. Zuriguel, T. Mullin, The role of particle shape on the stress distribution in a sandpile. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2089), 99–116 (2008)

    ADS  MathSciNet  Google Scholar 

  10. C. Zhou, J. Ooi, Numerical investigation of progressive development of granular pile with spherical and non-spherical particles. Mech. Mater. 41(6), 707–714 (2009)

    Google Scholar 

  11. J.Y. Zhu, Y.Y. Liang, Y.H. Zhou, The effect of the particle aspect ratio on the pressure at the bottom of sandpiles. Powder Technol. 234, 37–45 (2013)

    Google Scholar 

  12. Z.Y. Zhou, R.P. Zou, D. Pinson, A.B. Yu, Angle of repose and stress distributions of sandpiles formed with ellipsoidal particles. Granul. Matter 16, 695–709 (2014)

    ADS  Google Scholar 

  13. Y.Y. Liu, A.T. Yeung, D.L. Zhang, Y.R. Li, Experimental study on the effect of particle shape on stress dip in granular sandpiles. Powder Technol. 319, 415–425 (2017)

    Google Scholar 

  14. J.G. Liu, Q.C. Sun, F. Jin, The influence of flow rate on the decrease of pressure beneath a conical sandpile. Powder Technol. 212, 296–298 (2011)

    Google Scholar 

  15. J. Ai, J.Y. Ooi, J. Chen, J.M. Rotter, Z. Zhong, The role of deposition process on pressure dip formation underneath a granular pile. Mech. Mater. 66, 160–171 (2013)

    Google Scholar 

  16. J. Ai, Particle scale and bulk scale investigation of granular piles and silos. Ph.D. thesis, University of Edinburgh (2010)

  17. Y.C. Zhou, B.H. Xu, R.P. Zou, A.B. Yu, P. Zulli, Stress distribution in a sandpile formed on a deflected base. Adv. Powder Technol. 14, 401–410 (2003)

    Google Scholar 

  18. J.Y. Ooi, J. Ai, Z. Zhong, J.F. Chen, J.M. Rotter, Progressive pressure measurements beneath a granular pile with and without base deflection. Structures and granular solids: from scientific principles to engineering applications (CRC Press, London, 2008), pp.87–92

    Google Scholar 

  19. B.W. Fitzgerald, A. Zarghami, V.V. Mahajan, S.K. Sanjeevi, I. Mema, V. Verma, J.T. Padding, Multiscale simulation of elongated particles in fluidised beds. Chem. Eng. Sci. X 2, 100019 (2019)

    Google Scholar 

  20. H.G. Matuttis, S. Luding, H.J. Herrmann, Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109(1), 278–292 (2000)

    Google Scholar 

  21. C. Zhou, J. Ooi, Numerical investigation of progressive development of granular pile with spherical and non-spherical particles. Mech. Mater. 41(6), 707–714 (2009)

    Google Scholar 

  22. J. Ai, J.F. Chen, J.M. Rotter, J.Y. Ooi, Numerical and experimental studies of the base pressures beneath stockpiles. Granul. Matter 13(2), 133–141 (2011)

    Google Scholar 

  23. J.Y. Zhu, Y.Y. Liang, Y.H. Zhou, The effect of the particle aspect ratio on the pressure at the bottom of sandpiles. Powder Technol. 234, 37–45 (2013)

    Google Scholar 

  24. Y.Y. Liu, A.T. Yeung, D.L. Zhang, Y.R. Li, Experimental study on the effect of particle shape on stress dip in granular sandpiles. Powder Technol. 319, 415–425 (2017)

    Google Scholar 

  25. N. Topic, J.A.C. Gallas, T. Pöschel, Characteristics of large three-dimensional heaps of particles produced by ballistic deposition from extended source. Philos. Mag. 93(31–33), 4090–4107 (2013)

    ADS  Google Scholar 

  26. J.M. Ting, M. Khwaja, L.R. Meachum, J.D. Rowell, An ellipse-based discrete element model for granular materials. Int. J. Numer. Anal. Methods Geomech. 17, 603–623 (1993)

    MATH  Google Scholar 

  27. R.B.S. Oakeshott, S.F. Edvards, Pertubative theory of the packing of mixtures and non-spherical particles. Phys. A 202, 482–498 (1994)

    Google Scholar 

  28. C. Hogue, D. Newland, Efficient computer computation of moving granular particles. Powder Technol. 78, 51–66 (1994)

    Google Scholar 

  29. M.A. Hopkins, Numerical Simulation of Systems of Multitudinous Polygonal Blocks. USARREL Report CR 99-22, US Army Cold Regions Research and Engineering Laboratory (1992)

  30. J.A.C. Gallas, S. Sokolowski, Grain non-sphericity effects on the angle of repose of granular material. Int. J. Mod. Phys. B 7(9 & 10), 2037–2046 (1993)

    ADS  Google Scholar 

  31. B. Soltanbeigi, A. Podlozhnyuk, S.A. Papanicolopulos, C. Kloss, S. Pirker, J.Y. Ooi, DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales. Powder Technol. 329, 288–303 (2018)

    Google Scholar 

  32. A.H. Barr, Superquadrics and angle-preserving transformations. IEEE Comput. Graph. Appl. 1(January), 11–23 (1981)

    Google Scholar 

  33. J.R. Williams, A.P. Pentland, Superquadratics and modal dynamics for discrete elements in interactive design. Eng. Comput. 9, 115–127 (1992)

    Google Scholar 

  34. C. Ericson, Real-Time Collision Detection (CRC Press, New York, 2005)

    Google Scholar 

  35. A. Podlozhnyuk, S. Pirker, C. Kloss, Efficient implementation of superquadric particles in discrete element method within an open-source framework. Comput. Part. Mech. 4(1), 101–118 (2016)

    Google Scholar 

  36. Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)

    Google Scholar 

  37. N. Martys, R.D. Mountain, Velocity Verlet algorithm for dissipative-particle-dynamics-based models for suspensions. Phys. Rev. E 59, 3733–3736 (1999)

    ADS  Google Scholar 

  38. P.W. Cleary, M.L. Sawley, DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002)

    MATH  Google Scholar 

  39. L. Vanel, D. Howell, D. Clark, R.P. Behringer, E. Clement, Memories in sand: Experimental tests of construction history on stress distributions under sandpiles. Phys. Rev. E 60(5), 5040–5043 (1999)

    ADS  Google Scholar 

  40. K.L. Johnson, Contact Mechanics (Cambrige University Press, Cambrige, 1985)

    MATH  Google Scholar 

  41. W.C. Li, G. Deng, Q. Zhang, Q. Zhong, X. Sun, L. Lee, Comparison of continuum stresses in granular material computed by volume average approach and boundary average approach under static and quasi-static conditions. Int. J. Appl. Mech. 13(08), 2150095 (2021)

    Google Scholar 

  42. J.F. Geng, E. Longhi, R.P. Behringer, D.W. Howell, Memory in two dimensional heap experiments. Phys. Rev. E 64(6), 060301–060304 (2001)

    ADS  Google Scholar 

  43. A.V. Kyrylyuk, A.P. Philipse, Effect of particle shape on the random packing density of amorphous solids. Phys. Status Solidi A 208(10), 2299–2302 (2011)

    ADS  Google Scholar 

  44. Z. Zhou, R. Zou, D. Pinson, A. Yu, Discrete modelling of the packing of ellipsoidal particles. AIP Conf. Proc. 1542, 357 (2013)

    ADS  Google Scholar 

  45. H.M.B. Al-Hashemi, O.S.B. Al-Amoudi, A review on the angle of repose of granular materials. Powder Technol. 330, 397–417 (2018)

    Google Scholar 

  46. A. Mehta, G.C. Barker, The dynamics of sand, reports. Prog. Phys. 57, 383–416 (1994)

    ADS  Google Scholar 

  47. J.P. Wittmer, P. Claudin, M.E. Cates, J.P. Bouchaud, An explanation for the central stress minimum in sand piles. Nature 382(25), 336–338 (1996)

    ADS  Google Scholar 

  48. J.P. Wittmer, M.E. Cates, P. Claudin, Stress propagation and arching in static sandpiles. J. Phys. I EDP Sci. 7(1), 39–80 (1997)

    ADS  Google Scholar 

  49. V.A. Luchnikov, N.N. Medvedev, L. Oger, J.-P. Troadec, Voronoi-Delaunay analysis of voids in systems of nonspherical particles. Phys. Rev. E 59, 7205 (1999)

    ADS  Google Scholar 

  50. R. Al-Raoush, K.A. Alshibli, Distribution of local void ratio in porous media systems from 3D X-ray microtomography images. Phys. A Stat. Mech. Appl. 361, 441–456 (2006)

  51. F.M. Schaller, S.C. Kapfer, M.E. Evans, M.J.F. Hoffmann, T. Aste, G.E. Schroder-Turk, Set Voronoi diagrams of 3D assemblies of aspherical particles. Philos. Mag. 93(31–33), 3993–4017 (2013)

  52. A. Baule, H.A. Makse, Fundamental challenges in packing problems: from spherical to non-spherical particle. Soft Matter 10, 4423–4429 (2014)

    ADS  Google Scholar 

  53. H.A. Makse, D.L. Johnson, L.M. Schwartz, Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160–4163 (2000)

    ADS  Google Scholar 

  54. J. Horabik, P. Parafiniuk, M. Molenda, Discrete element modelling study of force distribution in a 3D pile of spherical particles. Powder Technol. 312, 194–203 (2017)

    Google Scholar 

  55. X. Deng, J. Scicolone, R.N. Dave, Discrete element method simulation of cohesive particles mixing under magnetically assisted impaction. Powder Technol. 243, 96–109 (2013)

  56. S. Zhao, X. Zhou, Effects of particle asphericity on the macro and micro-mechanical behaviours of granular assemblies. Granul. Matter 19(2), 3 (2017)

    Google Scholar 

  57. N.P. Kruyt, Micromechanical study of fabric evolution in quasi-static deformation of granular materials. Mech. Mater. 44, 120–129 (2012)

    Google Scholar 

  58. F. Radjai, S. Roux, J.J. Moreau, Contact forces in a granular packing. Chaos 9, 544 (1999)

    ADS  MATH  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Xiao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q. Particle shape effect on the structural evolution and force propagation inside the three-dimensional sandpile. Eur. Phys. J. E 46, 20 (2023). https://doi.org/10.1140/epje/s10189-023-00275-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-023-00275-w

Navigation