Skip to main content
Log in

Modeling of dendrite arm fragmentation and dendrite arm coarsening

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A two-dimensional quantitative cellular automaton (CA) model is employed to simulate dendrite arm fragmentation and dendrite arm coarsening in mushy zones. The phenomenon of dendrite arm fragmentation of an Al-Cu alloy during heating is well represented by the CA simulation, and it is analyzed in detail by comparing the local actual concentration and local equilibrium concentration. The CA simulations for the dendritic microstructures of SCN-ACE alloys during isothermal holding in a mushy zone reproduce the typical dendrite coarsening features as observed in experiments. The effects of holding temperature and alloy composition on the microstructures and dendrite coarsening kinetics are investigated. It is found that the melting of small dendrite arms and interdendritic groove advancement are the two main mechanisms in dendrite coarsening. The mechanism of coalescence by joining arm tips is more likely to take place at a lower temperature or for a lower alloy composition, while the dendrite arm fragmentation mechanism tends to occur at a higher temperature. The coarsening rate constant is found to decrease with increasing holding temperature and alloy composition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rettenmayr, Int. Mater. Rev. 54, 1 (2009)

    Google Scholar 

  2. S.P. Marsh, M.E. Glicksman, Metall. Mater. Trans. A 27, 557 (1996)

    Google Scholar 

  3. D.J. Rowenhorst, P.W. Voorhees, Annu. Rev. Mater. Res. 42, 105 (2012)

    ADS  Google Scholar 

  4. A.M. Mullis, R.F. Cochrane, J. Appl. Phys. 82, 3783 (1997)

    ADS  Google Scholar 

  5. M.A. Martorano, C. Beckeckermann, C.A. Gandin, Metall. Mater. Trans. A 34, 1657 (2003)

    Google Scholar 

  6. R.H. Mathiesen, L. Arnberg, P. Bleuet, A. Somogyi, Metall. Mater. Trans. A 37, 2515 (2006)

    Google Scholar 

  7. H. Yasuda, I. Ohnaka, K. Kawasaki, A. Sugiyama, T. Ohmichi, J. Iwane, K. Umetani, J. Cryst. Growth 262, 645 (2005)

    ADS  Google Scholar 

  8. M. Schwarz, A. Karma, K. Eckler, D. Herlach, Phys. Rev. Lett. 73, 1380 (1994)

    ADS  Google Scholar 

  9. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961)

    ADS  Google Scholar 

  10. C.T. Wagner, Z. Elektrochem. 65, 581 (1961)

    Google Scholar 

  11. D.H. Kirkwood, Mater. Sci. Eng. A 73, L1 (1985)

    Google Scholar 

  12. K.P. Young, D.H. Kirkwood, Metall. Trans. 6, 197 (1975)

    Google Scholar 

  13. T.Z. Kattamis, M.C. Flemings, Trans. Metall. Soc. AIME 236, 1523 (1966)

    Google Scholar 

  14. J.J. Reeves, T.Z. Kattamis, Scr. Metall. 5, 223 (1971)

    Google Scholar 

  15. M. Chen, T.Z. Kattamis, Mater. Sci. Eng. A 247, 239 (1998)

    Google Scholar 

  16. T.Z. Kattamis, J.C. Coughlin, M.C. Flemings, Trans. AIME 239, 1504 (1967)

    Google Scholar 

  17. M.C. Flemings, T.Z. Kattamis, B.P. Bardes, Trans. Am. Foundry Soc. 89, 501 (1991)

    Google Scholar 

  18. A. Mortensen, Metall. Mater. Trans. A 20, 247 (1989)

    ADS  Google Scholar 

  19. S. Terzi, L. Salvo, M. Suery, A.K. Dahle, E. Boller, Acta Mater. 58, 20 (2010)

    Google Scholar 

  20. R. Mendoza, J. Alkemper, P.W. Voorhees, Metall. Mater. Trans. A 54, 481 (2003)

    Google Scholar 

  21. D. Kammer, P.W. Voorhees, Acta Mater. 54, 1549 (2006)

    Google Scholar 

  22. J.L. Fife, P.W. Voorhees, Acta Mater. 57, 2418 (2009)

    Google Scholar 

  23. T. Cool, P.W. Voorhees, Acta Mater. 127, 359 (2017)

    Google Scholar 

  24. K. Jackson, J. Hunt, D. Uhlmann, T. Seward, Trans. Metall. Soc. AIME 236, 149 (1966)

    Google Scholar 

  25. J.L. Fife, J.W. Gibbs, E.B. Gulsoy, C.L. Park, K. Thornton, P.W. Voorhees, Acta Mater. 70, 66 (2014)

    Google Scholar 

  26. E.Y. Guo, A.B. Phillion, B. Cai, S.S. Shuai, D. Kazantsev, T. Jing, Peter D. Lee, Acta Mater. 123, 373 (2017)

    Google Scholar 

  27. B. Li, H. Brody, A. Kazimirov, Metall. Mater. Trans. A 38, 599 (2007)

    Google Scholar 

  28. N. Limodin, L. Salvo, E. Boller, M. Suery, M. Felberbaum, S. Gailliegue, K. Madi, Acta Mater. 57, 2300 (2009)

    Google Scholar 

  29. S.S. Shuai, E.Y. Guo, A.B. Phillion, Mark D. Callaghan, T. Jing, Peter D. Lee, Acta Mater. 118, 260 (2016)

    Google Scholar 

  30. E. Liotti, A. Lui, S. Kumar, Z. Guo, C. Bi, T. Connolley, P.S. Grant, Acta Mater. 121, 384 (2016)

    Google Scholar 

  31. J.C. Wang, G.C. Yang, Acta Mater. 56, 4585 (2008)

    Google Scholar 

  32. C.L. Park, P.W. Voorhees, K. Thornton, Acta Mater. 90, 182 (2015)

    Google Scholar 

  33. T. Cool, P.W. Voorhees, Philos. Trans. A 376, 20170213 (2018)

    ADS  Google Scholar 

  34. E. Wesner, A. Choudhury, A. August, M. Berghoff, B. Nestler, J. Cryst. Growth 359, 107 (2012)

    ADS  Google Scholar 

  35. M.F. Zhu, D.M. Stefanescu, Acta Mater. 55, 1741 (2007)

    Google Scholar 

  36. S.Y. Pan, M.F. Zhu, Acta Mater. 58, 340 (2010)

    Google Scholar 

  37. L. Beltran-Sanchez, D.M. Stefanescu, Metall. Mater. Trans. A 35, 2471 (2004)

    Google Scholar 

  38. H. Fang, Q.Y. Tang, Q.Y. Zhang, T.F. Gu, M.F. Zhu, Int. J. Heat Mass Transfer 133, 371 (2019)

    Google Scholar 

  39. X.F. Zhang, J.Z. Zhao, H.X. Jiang, M.F. Zhu, Acta Mater. 60, 2249 (2012)

    Google Scholar 

  40. K. Reuther, M. Rettenmayr, Comput. Mater. Sci. 95, 213 (2014)

    Google Scholar 

  41. C.A. Gandin, M. Rappaz, Acta Mater. 45, 2187 (1997)

    Google Scholar 

  42. Q.Y. Zhang, H. Fang, H. Xue, Q.Y. Tang, S.Y. Pan, M. Rettenmayr, M.F. Zhu, Scr. Mater. 151, 28 (2018)

    Google Scholar 

  43. Q.Y. Zhang, H. Xue, Q.Y. Tang, S.Y. Pan, M. Rettenmayr, M.F. Zhu, Comput. Mater. Sci. 146, 204 (2018)

    Google Scholar 

  44. Q.Y. Zhang, H. Fang, H. Xue, S.Y. Pan, M. Rettenmayr, M.F. Zhu, Sci. Rep. 7, 17809 (2017)

    ADS  Google Scholar 

  45. M.J.M. Krane, D.R. Johnson, S. Raghavan, Appl. Math. Model. 33, 2234 (2009)

    MathSciNet  Google Scholar 

  46. U. Bösenberg, Kornvergröberung in gegenwart von flüssigen filmen an den korngrenzen, PhD Thesis (FSU, Jena, Germany, 2005)

  47. I. Farup, J.M. Drezet, M. Rappaz, Acta Mater. 49, 1261 (2001)

    Google Scholar 

  48. D. An, S.Y. Pan, L. Huang, T. Dai, B. Krakauer, M.F. Zhu, ISIJ Int. 54, 422 (2014)

    Google Scholar 

  49. K.A. Jackson, J.D. Hunt, Acta Metall. 13, 1212 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingfang Zhu.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H., Xue, H., Zhang, Q. et al. Modeling of dendrite arm fragmentation and dendrite arm coarsening. Eur. Phys. J. E 43, 44 (2020). https://doi.org/10.1140/epje/i2020-11968-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11968-5

Keywords

Navigation