Skip to main content
Log in

Phase-field modeling of complex dendritic structures in constrained growth of hexagonal close-packed crystals

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We perform the phase-field modeling to investigate the growth pattern selections of the complex dendritic structures in constrained growth with different solidification and orientation conditions. The results show that hexagonal close-packed (hcp) crystals emerge as dendritic and cellular arrays in different planes, originating from the specific hcp anisotropy that allows different growth preferences between the basal and cylindrical planes. A morphological transition of the titled dendrites to tip-splitting dendrites arises reflecting the competition between the preferred orientation induced primary growth and the misorientation induced sidebranching formation. Furthermore, the dendritic patterns exhibit sharper tips and the more significant sidebranches, while the cellular pattern is changed from the symmetric cells to the tip-splitting cells, and to seaweeds with the increase of anisotropy strength, indicating the competitive mechanism of the in-plane anisotropy induced growth promotion and the out-plane anisotropy induced growth restriction. We expect to understand the growth competition, the morphology selection, as well as the orientation dependence of the complex dendritic structures in the three-dimensional (3D) constrained growth.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.-Q. Chen, Annu. Rev. Mater. Res. 32, 113 (2002)

    Google Scholar 

  2. H. Xing, M. Ji, X. Dong, Y. Wang, L. Zhang, S. Li, Mater. Des. 185, 108250 (2020)

    Google Scholar 

  3. D. Sun, S. Pan, Q. Han, B. Sun, Int. J. Heat Mass Transfer 103, 821 (2016)

    Google Scholar 

  4. D. Tourret, A. Karma, Acta Mater. 120, 240 (2016)

    Google Scholar 

  5. D. Sun, H. Xing, X. Dong, Y. Han, Int. J. Heat Mass Transfer 133, 1240 (2019)

    Google Scholar 

  6. D. Sun, M. Zhu, S. Pan, D. Raabe, Acta Mater. 57, 1755 (2009)

    Google Scholar 

  7. D. Sun, M. Zhu, S. Pan, C. Yang, D. Raabe, Comput. Math. Appl. 61, 3585 (2011)

    MathSciNet  Google Scholar 

  8. Y. Chen, X. Dou, K. Wang, Y. Han, Adv. Energy Mater. 9, 1900019 (2019)

    ADS  Google Scholar 

  9. W. Liu, T. Yang, J. Liu, P. Che, Y. Han, Ind. Eng. Chem. Res. 55, 8319 (2016)

    Google Scholar 

  10. H. Wang, Y. Han, J. Li, Cryst. Growth Des. 13, 1820 (2013)

    Google Scholar 

  11. F. Yu, Y. Wei, Y. Ji, L.Q. Chen, J. Mater. Process. Technol. 255, 285 (2017)

    Google Scholar 

  12. L. Chen, H.W. Zhang, L.Y. Liang, Z. Liu, Y. Qi, P. Lu, J. Chen, L.-Q. Chen, J. Power Sources 300, 376 (2015)

    ADS  Google Scholar 

  13. R. Chen, Q. Xu, B. Liu, Comput. Mater. Sci. 105, 90 (2015)

    Google Scholar 

  14. S. Liu, S. Li, F. Liu, Int. J. Heat Mass Transfer 134, 51 (2019)

    Google Scholar 

  15. S. Li, D. Li, S. Liu, Z. Gu, W. Liu, J. Huang, Acta Mater. 83, 310 (2015)

    Google Scholar 

  16. S.-c. Liu, L.-h. Liu, L. Shu, J.-z. Wang, L. Wei, Trans. Nonferrous Met. Soc. China 29, 601 (2019)

    Google Scholar 

  17. D. Sun, M. Zhu, J. Wang, B. Sun, Int. J. Heat Mass Transfer 94, 474 (2016)

    Google Scholar 

  18. P. Galenko, D. Danilov, K. Reuther, D. Alexandrov, M. Rettenmayr, D. Herlach, J. Cryst. Growth 457, 349 (2017)

    ADS  Google Scholar 

  19. X.B. Qi, Y. Chen, X.H. Kang, D.Z. Li, T.Z. Gong, Sci. Rep. 7, 45770 (2017)

    ADS  Google Scholar 

  20. B. Chalmers, Principles of Solidification (Wiley & Sons, 1964) pp. 189--192

  21. F. Weinberg, B. Chalmers, Can. J. Phys. 30, 488 (1952)

    ADS  Google Scholar 

  22. M. Wang, Y. Xu, T. Jing, G. Peng, Y. Fu, N. Chawla, Scr. Mater. 67, 629 (2012)

    Google Scholar 

  23. W.K.a.D.J. Fisher, Fundamentals of Solidification, 3rd edition (Trans. Tech. Publications, Switzerland, 1990)

  24. K. Pettersen, N. Ryum, Metall. Trans. A 20, 847 (1989)

    Google Scholar 

  25. K. Pettersen, O. Lohne, N. Ryum, Metall. Trans. A 21, 221 (1990)

    Google Scholar 

  26. M. Amoorezaei, S. Gurevich, N. Provatas, Acta Mater. 60, 657 (2012)

    Google Scholar 

  27. T. Haxhimali, A. Karma, F. Gonzales, M. Rappaz, Nat. Mater. 5, 660 (2006)

    ADS  Google Scholar 

  28. L. Liu, J.F. Li, Y.H. Zhou, Acta Mater. 59, 5558 (2011)

    Google Scholar 

  29. S. Ando, H. Tonda, T. Gotoh, Metall. Mater. Trans. A 33, 823 (2002)

    Google Scholar 

  30. Q. Zhang, D. Sun, S. Pan, M. Zhu, Int. J. Heat Mass Transfer 146, 118838 (2020)

    Google Scholar 

  31. M. Zhu, Z. Li, D. An, Q. Zhang, T. Dai, ISIJ Int. 54, 384 (2014)

    Google Scholar 

  32. W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Annu. Rev. Mater. Res. 32, 163 (2002)

    Google Scholar 

  33. S.G. Kim, W.T. Kim, T. Suzuki, Phys. Rev. E 60, 7186 (1999)

    ADS  Google Scholar 

  34. I. Steinbach, Model. Simul. Mater. Sci. Eng. 17, 073001 (2009)

    ADS  Google Scholar 

  35. A. Karma, Phys. Rev. Lett. 87, 115701 (2001)

    ADS  Google Scholar 

  36. G. McFadden, A. Wheeler, R. Braun, S. Coriell, R. Sekerka, Phys. Rev. E 48, 2016 (1993)

    MathSciNet  ADS  Google Scholar 

  37. D. Montiel, L. Liu, L. Xiao, Y. Zhou, N. Provatas, Acta Mater. 60, 5925 (2012)

    Google Scholar 

  38. S. Shuai, E. Guo, Q. Zheng, M. Wang, T. Jing, Y. Fu, Mater. Charact. 118, 304 (2016)

    Google Scholar 

  39. M. Wang, J. Williams, L. Jiang, F. De Carlo, T. Jing, N. Chawla, Scr. Mater. 65, 855 (2011)

    Google Scholar 

  40. M. Wang, Y. Xu, Q. Zheng, S. Wu, T. Jing, N. Chawla, Metall. Mater. Trans. A 45, 2562 (2014)

    Google Scholar 

  41. B. Echebarria, R. Folch, A. Karma, M. Plapp, Phys. Rev. E 70, 061604 (2004)

    ADS  Google Scholar 

  42. M.B. Amar, E. Brener, Phys. Rev. Lett. 71, 589 (1993)

    ADS  Google Scholar 

  43. J. Li, Z. Wang, Y. Wang, J. Wang, Acta Mater. 60, 1478 (2012)

    Google Scholar 

  44. J. Deschamps, M. Georgelin, A. Pocheau, Phys. Rev. E 78, 011605 (2008)

    ADS  Google Scholar 

  45. H. Xing, X. Dong, C. Chen, J. Wang, L. Du, K. Jin, Int. J. Heat Mass Transfer 90, 911 (2015)

    Google Scholar 

  46. H. Xing, L. Zhang, K. Song, H. Chen, K. Jin, Int. J. Heat Mass Transfer 104, 607 (2017)

    Google Scholar 

  47. H. Xing, K. Ankit, X. Dong, H. Chen, K. Jin, Int. J. Heat Mass Transfer 117, 1107 (2018)

    Google Scholar 

  48. J.A. Dantzig, M. Rappaz, Solidification, 2nd edition (EPFL Press, 2016)

  49. C.A. Gandin, M. Eshelman, R. Trivedi, Metall. Mater. Trans. A 27, 2727 (1996)

    Google Scholar 

  50. H. Xing, X. Dong, H. Wu, G. Hao, J. Wang, C. Chen, K. Jin, Sci. Rep. 6, 26625 (2016)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongliang Zhao.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Lu, Y., Zhao, H. et al. Phase-field modeling of complex dendritic structures in constrained growth of hexagonal close-packed crystals. Eur. Phys. J. E 43, 28 (2020). https://doi.org/10.1140/epje/i2020-11950-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11950-3

Keywords

Navigation