Skip to main content
Log in

The emergence of local wrinkling or global buckling in thin freestanding bilayer films

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Periodic wrinkling of a rigid capping layer on a deformable substrate provides a useful method for templating surface topography for a variety of novel applications. Many experiments have studied wrinkle formation during the compression of a rigid film on a relatively soft pre-strained elastic substrate, and most have focused on the regime where the substrate thickness can be considered semi-infinite relative to that of the film. As the relative thickness of the substrate is decreased, the bending stiffness of the film dominates, causing the bilayer to transition to either local wrinkling or a global buckling instability. In this work optical microscopy was used to study the critical parameters that determine the emergence of local wrinkling or global buckling of freestanding bilayer films consisting of a thin rigid polymer capping layer on a pre-strained elastomeric substrate. The thickness ratio of the film and substrate as well as the pre-strain were controlled and used to create a buckling phase diagram which describes the behaviour of the system as the ratio of the thickness of the substrate is decreased. A simple force balance model was developed to understand the thickness and strain dependences of the wrinkling and buckling modes, with excellent quantitative agreement being obtained with experiments using only independently measured material parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Genzer, J. Groenewold, Soft Matter 2, 310 (2006)

    ADS  Google Scholar 

  2. A. Chiche, C.M. Stafford, J.T. Cabral, Soft Matter 4, 2360 (2008)

    ADS  Google Scholar 

  3. Y.C. Chen, A.J. Crosby, Adv. Mater. 26, 5626 (2014)

    Google Scholar 

  4. Y. Liu, M. Pharr, G.A. Salvatore, ACS Nano 11, 9614 (2017)

    Google Scholar 

  5. J.A. Rogers, T. Someya, Y. Huang, Science 327, 1603 (2010)

    ADS  Google Scholar 

  6. N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Nature 393, 146 (1998)

    ADS  Google Scholar 

  7. E.P. Chan, A.J. Crosby, Soft Matter 2, 324 (2006)

    ADS  Google Scholar 

  8. E.P. Chan, A.J. Crosby, Adv. Mater. 18, 3238 (2006)

    Google Scholar 

  9. D. Breid, A.J. Crosby, Soft Matter 7, 4490 (2011)

    ADS  Google Scholar 

  10. A.L. Volynskii, S. Bazhenov, O.V. Lebedeva, N.F. Bakeev, J. Mater. Sci. 35, 547 (2000)

    ADS  Google Scholar 

  11. C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. VanLandingham, H.C. Kim, W. Volksen, R.D. Miller, E.E. Simonyi, Nat. Mater. 3, 545 (2004)

    ADS  Google Scholar 

  12. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nat. Mater. 4, 293 (2005)

    ADS  Google Scholar 

  13. P.C. Lin, S. Yang, Appl. Phys. Lett. 90, 241903 (2007)

    ADS  Google Scholar 

  14. Y. Sun, V. Kumar, I. Adesida, J. Rogers, Adv. Mater. 18, 2857 (2006)

    Google Scholar 

  15. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea et al., Nature 499, 458 (2013)

    ADS  Google Scholar 

  16. L. Pocivavsek, R. Dellsy, S. Johnson, B. Lin, K.Y.C. Lee, E. Cerda, Science 320, 912 (2008)

    ADS  Google Scholar 

  17. F. Brau, P. Damman, H. Diamant, T.A. Witten, Soft Matter 9, 8177 (2013)

    ADS  Google Scholar 

  18. Q. Wang, X. Zhao, Sci. Rep. 5, 8887 (2015)

    ADS  Google Scholar 

  19. F. Brau, H. Vandeparre, A. Sabbah, C. Poulard, A. Boudaoud, P. Damman, Nat. Phys. 7, 56 (2010)

    Google Scholar 

  20. H. Mei, R. Huang, J.Y. Chung, C.M. Stafford, H.H. Yu, Appl. Phys. Lett. 90, 151902 (2007)

    ADS  Google Scholar 

  21. Y. Ebata, A.B. Croll, A.J. Crosby, Soft Matter 8, 9086 (2012)

    ADS  Google Scholar 

  22. A.J. Nolte, J. Young Chung, C.S. Davis, C.M. Stafford, Soft Matter 13, 7930 (2017)

    ADS  Google Scholar 

  23. C.M. Stafford, S. Guo, C. Harrison, M.Y.M. Chiang, Rev. Sci. Instrum. 76, 062207 (2005)

    ADS  Google Scholar 

  24. C.M. Stafford, B.D. Vogt, C. Harrison, D. Julthongpiput, R. Hunag, Macromolecules 38, 5095 (2006)

    ADS  Google Scholar 

  25. J.Y. Chung, A.J. Nolte, C.M. Stafford, Adv. Mater. 23, 349 (2011)

    Google Scholar 

  26. S. Wang, J. Song, D.H. Kim, Y. Huang, J.A. Rogers, Appl. Phys. Lett. 93, 023126 (2008)

    ADS  Google Scholar 

  27. Y. Ma, Y. Xue, K.I. Jang, X. Feng, J.A. Rogers, Y. Huang, Proc. R. Soc. A 472, 20160339 (2016)

    ADS  Google Scholar 

  28. X. Meng, G. Liu, Z. Wang, S. Wang, Appl. Math. Mech. 38, 469 (2017)

    Google Scholar 

  29. D.C. Hyun, U. Jeong, J. Appl. Polym. Sci. 112, 2683 (2009)

    Google Scholar 

  30. A. Takei, F. Brau, B. Roman, J. Bico, EPL 96, 64001 (2011)

    ADS  Google Scholar 

  31. A. Concha, J.W. McIver, P. Mellado, D. Clarke, O. Tchernyshyov, R.L. Leheny, Phys. Rev. E 75, 016609 (2007)

    ADS  Google Scholar 

  32. Y. Ma, K.I. Jang, L. Wang, H.N. Jung, J.W. Kwak, Y. Xue, H. Chen, Y. Yang, D. Shi, X. Feng et al., Adv. Funct. Mater. 26, 5345 (2016)

    Google Scholar 

  33. B. Davis-Purcell, P. Soulard, T. Salez, E. Raphaël, K. Dalnoki-Veress, Eur. Phys. J. E 41, 36 (2018)

    Google Scholar 

  34. R.D. Schulman, J.F. Niven, M.A. Hack, C. DiMaria, K. Dalnoki-Veress, Soft Matter 14, 3557 (2018)

    ADS  Google Scholar 

  35. J.C. Ono-dit Biot, M. Trejo, E. Loukiantcheko, M. Lauch, E. Raphaël, K. Dalnoki-Veress, T. Salez, Phys. Rev. Fluids 4, 014808 (2019)

    ADS  Google Scholar 

  36. J. Brandrup, E.H. Immergut, E.A. Grulke (Editors), Polymer Handbook, Vol. 49, 4th ed. (Wiley and Sons, New York) 1999

  37. L.D. Landau, E.M. Liftshitz, Theory of Elasticity, 3rd ed. (Butterworth-Heinemann, New York, USA) 1986

  38. M. Biot, J. Appl. Mech. 59, A1 (1937)

    Google Scholar 

  39. H. Allen, Analysis and Design of Structural Sandwich Panels, 1st ed. (Pergamon) 1969

  40. M. George, C. Coupeau, J. Colin, F. Cleymand, J. Grilhé, Philos. Mag. A 82, 633 (2002)

    ADS  Google Scholar 

  41. B. Audoly, B. Roman, A. Pocheau, Eur. Phys. J. B 27, 7 (2002)

    ADS  Google Scholar 

  42. B. Audoly, Phys. Rev. Lett. 83, 4124 (1999)

    ADS  Google Scholar 

  43. M.W. Moon, K.R. Lee, K. Oh, J. Hutchinson, Acta Mater. 52, 3151 (2004)

    Google Scholar 

  44. Y. Ni, S. Yu, H. Jiang, L. He, Nat. Commun. 8, 14138 (2017)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari Dalnoki-Veress.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niven, J.F., Chowdhry, G., Sharp, J.S. et al. The emergence of local wrinkling or global buckling in thin freestanding bilayer films. Eur. Phys. J. E 43, 20 (2020). https://doi.org/10.1140/epje/i2020-11946-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2020-11946-y

Keywords

Navigation