Skip to main content
Log in

Theoretical study of geometry and electronic properties of medium-sized doped clusters Li2Bn0/− (n = 1–12)

  • Regular Article – Clusters and Nanostructures
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, the geometric structure and physicochemical properties of Li2Bn0/− (n = 1–12) clusters were investigated using CALYPSO structure prediction software in combination with density functional theory at B3LYP/6-311G level. The results suggest that the doping of Li atoms has a significant effect on the ground state geometry of the Bn clusters. The stability changes with the increase in the number of boron atoms. Then two stable ground state structures, Li2B8 and Li2B9, are selected for further analyzing their molecular orbitals and bonding properties. It is demonstrated that the stability of the Li2Bn0/− (n = 1–12) clusters originates from the sp hybridization between B–B and Li–B. It is expected that this work can provide some references for future research on boron-based nanomaterials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. All data generated or analysed during this study are included in this published article.

References

  1. A.C. Reber, S.N. Khanna, Superatoms: electronic and geometric effects on reactivity. Acc. Chem. Res. 50(2), 255–263 (2017). https://doi.org/10.1021/acs.accounts.6b00464

    Article  Google Scholar 

  2. W. Knight, Recent developments in cluster science. Phys. Scr. 1989(T29), 20 (1989). https://doi.org/10.1088/0031-8949/1989/T29/003

    Article  Google Scholar 

  3. A. Castleman Jr., S. Khanna, Clusters, superatoms, and building blocks of new materials. J. Phys. Chem. C. 113(7), 2664–2675 (2009). https://doi.org/10.1021/jp806850h

    Article  Google Scholar 

  4. P. Jena, Beyond the periodic table of elements: the role of superatoms. J. Phys. Chem. Lett. 4(9), 1432–1442 (2013). https://doi.org/10.1021/jz400156t

    Article  Google Scholar 

  5. P. Jena, Q. Sun, Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 118(11), 5755–5870 (2018). https://doi.org/10.1021/acs.chemrev.7b00524

    Article  Google Scholar 

  6. W.N. Lipscomb, The boranes and their relatives. Science 196(4294), 1047–1055 (1977). https://doi.org/10.1126/science.196.4294.1047

    Article  ADS  Google Scholar 

  7. T. Jian, X. Chen, S.-D. Li, A.I. Boldyrev, J. Li, L.-S. Wang, Probing the structures and bonding of size-selected boron and doped-boron clusters. Chem. Soc. Rev. 48(13), 3550–3591 (2019). https://doi.org/10.1039/C9CS00233B

    Article  Google Scholar 

  8. I.-N. Chen, S.-Y. Wu, H.-T. Chen, Hydrogen storage in N-and B-doped graphene decorated by small platinum clusters: a computational study. Appl. Surf. Sci. 441, 607–612 (2018). https://doi.org/10.1016/j.apsusc.2018.02.106

    Article  ADS  Google Scholar 

  9. L. Van Duong, N.T. Si, N.P. Hung, M.T. Nguyen, The binary boron lithium clusters B12Lin with n = 1–14: in search for hydrogen storage materials. Phys. Chem. Chem. Phys. 23(43), 24866–24877 (2021). https://doi.org/10.1039/D1CP03682C

    Article  Google Scholar 

  10. A.S. Rad, Application of B12N12 and B12P12 as two fullerene-like semiconductors for adsorption of halomethane: density functional theory study. Semiconductors 51, 134–138 (2017). https://doi.org/10.1134/S1063782617010225

    Article  ADS  Google Scholar 

  11. M.I. Eremets, V.V. Struzhkin, H.-K. Mao, R.J. Hemley, Superconductivity in boron. Science 293(5528), 272–274 (2001). https://doi.org/10.1126/science.1062286

    Article  ADS  Google Scholar 

  12. K. Yamamoto, T. Imaoka, M. Tanabe, T. Kambe, New horizon of nanoparticle and cluster catalysis with dendrimers. Chem. Rev. 120(2), 1397–1437 (2019). https://doi.org/10.1021/acs.chemrev.9b00188

    Article  Google Scholar 

  13. B. Zandkarimi, A.N. Alexandrova, Surface-supported cluster catalysis: ensembles of metastable states run the show. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 9(6), 1420 (2019). https://doi.org/10.1002/wcms.1420

    Article  Google Scholar 

  14. A. Balogh, M. Dunlop, S. Cowley, D. Southwood, J. Thomlinson, K. Glassmeier, G. Musmann, H. Lühr, S. Buchert, M. Acuna, The cluster magnetic field investigation. Space Sci. Rev. 79, 65–91 (1997). https://doi.org/10.1023/A:1004970907748

    Article  ADS  Google Scholar 

  15. J.C. Ordaz, E.C. Anota, M.S. Villanueva, M. Castro, Possibility of a magnetic [BN fullerene: B6 cluster] nanocomposite as a vehicle for the delivery of dapsone. New J. Chem. 41(16), 8045–8052 (2017). https://doi.org/10.1039/C7NJ01133D

    Article  Google Scholar 

  16. K. Khan, A.K. Tareen, M. Aslam, M.F. Khan, Z. Shi, C. Ma, S.S. Shams, R. Khatoon, H. Zhang, Z. Guo, Synthesis, properties and novel electrocatalytic applications of the 2D-borophene Xenes. Prog. Solid State Chem. 59, 100283 (2020). https://doi.org/10.1016/j.progsolidstchem.2020.100283

    Article  Google Scholar 

  17. H.J. Zhai, A.N. Alexandrova, K.A. Birch, A.I. Boldyrev, L.S. Wang, Hepta-and octacoordinate boron in molecular wheels of eight-and nine-atom boron clusters: observation and confirmation. Angew. Chem. Int. Ed. 42(48), 6004–6008 (2003). https://doi.org/10.1002/anie.200351874

    Article  Google Scholar 

  18. A.P. Sergeeva, D.Y. Zubarev, H.-J. Zhai, A.I. Boldyrev, L.-S. Wang, A photoelectron spectroscopic and theoretical study of B16 and B162: an all-boron naphthalene. J. Am. Chem. Soc. 130(23), 7244–7246 (2008). https://doi.org/10.1021/ja802494z

    Article  Google Scholar 

  19. N. MinháTam, H. TanáPham, L. VanáDuong, M. PhuongáPham-Ho, M. ThoáNguyen, Fullerene-like boron clusters stabilized by an endohedrally doped iron atom: BnFe with n = 14, 16, 18 and 20. Phys. Chem. Chem. Phys. 17(5), 3000–3003 (2015). https://doi.org/10.1039/C4CP04279D

    Article  Google Scholar 

  20. I. Boustani, Systematic ab initio investigation of bare boron clusters: determination of the geometryand electronic structures of Bn (n = 2–14). Phys. Rev. B. 55(24), 16426 (1997). https://doi.org/10.1103/PhysRevB.55.16426

    Article  ADS  Google Scholar 

  21. M. Atiş, C. Özdoşan, Z.B. Güvenç, Density functional study of physical and chemical properties of nano size boron clusters: Bn (n = 13–20). Chin. J. Chem. Phys. 22(4), 380 (2009). https://doi.org/10.1088/1674-0068/22/04/380-388

    Article  Google Scholar 

  22. B. Kiran, S. Bulusu, H.-J. Zhai, S. Yoo, X.C. Zeng, L.-S. Wang, Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl. Acad. Sci. 102(4), 961–964 (2005). https://doi.org/10.1073/pnas.0408132102

    Article  ADS  Google Scholar 

  23. Q. Chen, T.-T. Chen, H.-R. Li, X.-Y. Zhao, W.-J. Chen, H.-J. Zhai, S.-D. Li, L.-S. Wang, B31 and B32: chiral quasi-planar boron clusters. Nanoscale 11(19), 9698–9704 (2019). https://doi.org/10.1039/C9NR01524H

    Article  Google Scholar 

  24. X. Wu, L. Sai, S. Zhou, P. Zhou, M. Chen, M. Springborg, J. Zhao, Competition between tubular, planar and cage geometries: a complete picture of structural evolution of Bn (n = 31–50) clusters. Phys. Chem. Chem. Phys. 22(23), 12959–12966 (2020). https://doi.org/10.1039/D0CP01256D

    Article  Google Scholar 

  25. W.-J. Chen, Y.-Y. Ma, T.-T. Chen, M.-Z. Ao, D.-F. Yuan, Q. Chen, X.-X. Tian, Y.-W. Mu, S.-D. Li, L.-S. Wang, B48: a bilayer boron cluster. Nanoscale 13(6), 3868–3876 (2021). https://doi.org/10.1039/D0NR09214B

    Article  Google Scholar 

  26. L. Hanley, S.L. Anderson, Oxidation of small boron cluster ions (B+1–13) by oxygen. J. Chem. Phys. 89(5), 2848–2860 (1988). https://doi.org/10.1063/1.454989

    Article  ADS  Google Scholar 

  27. H.-J. Zhai, L.-S. Wang, A.N. Alexandrova, A.I. Boldyrev, Electronic structure and chemical bonding of B5 and B5 by photoelectron spectroscopy and ab initio calculations. J. Chem. Phys. 117(17), 7917–7924 (2002). https://doi.org/10.1063/1.1511184

    Article  ADS  Google Scholar 

  28. A.N. Alexandrova, A.I. Boldyrev, H.-J. Zhai, L.-S. Wang, All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord. Chem. Rev. 250(21–22), 2811–2866 (2006). https://doi.org/10.1016/j.ccr.2006.03.032

    Article  Google Scholar 

  29. W. Huang, A.P. Sergeeva, H.-J. Zhai, B.B. Averkiev, L.-S. Wang, A.I. Boldyrev, A concentric planar doubly π-aromatic B19 cluster. Nat. Chem. 2(3), 202–206 (2010). https://doi.org/10.1038/nchem.534

    Article  Google Scholar 

  30. H.-J. Zhai, Y.-F. Zhao, W.-L. Li, Q. Chen, H. Bai, H.-S. Hu, Z.A. Piazza, W.-J. Tian, H.-G. Lu, Y.-B. Wu, Observation of an all-boron fullerene. Nat. Chem. 6(8), 727–731 (2014). https://doi.org/10.1038/nchem.1999

    Article  Google Scholar 

  31. Z.A. Piazza, H.-S. Hu, W.-L. Li, Y.-F. Zhao, J. Li, L.-S. Wang, Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014). https://doi.org/10.1038/ncomms4113

    Article  ADS  Google Scholar 

  32. K.A. Nguyen, K. Lammertsma, Structure, bonding, and stability of small boron-lithium clusters. J. Phys. Chem. A. 102(9), 1608–1614 (1998). https://doi.org/10.1021/jp972864l

    Article  Google Scholar 

  33. Y. Li, D. Wu, Z.R. Li, C.C. Sun, Structural and electronic properties of boron-doped lithium clusters: Ab initio and DFT studies. J. Comput. Chem. 28(10), 1677–1684 (2007). https://doi.org/10.1002/jcc.20637

    Article  Google Scholar 

  34. M.A. Çipiloğlu, A. Özkurt, Theoretical investigation on molecular structure and electronic properties of BxLiy cluster for lithium-ion batteries with quantum ESPRESSO program. Molecules 25(14), 3266 (2020). https://doi.org/10.3390/molecules25143266

    Article  Google Scholar 

  35. D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12(3), 194–206 (2017). https://doi.org/10.1038/nnano.2017.16

    Article  ADS  Google Scholar 

  36. W. Liu, Y. Zhao, Y. Li, Q. Jiang, E. Lavernia, Enhanced hydrogen storage on Li-dispersed carbon nanotubes. J. Phys. Chem. C. 113(5), 2028–2033 (2009). https://doi.org/10.1021/jp8091418

    Article  Google Scholar 

  37. A.L. Arokiyanathan, N. Panjulingam, S. Lakshmipathi, Chemical properties of lithium cluster (Lix, x = 2–8) on Stone–Wales defect graphene sheet: a DFT study. J. Phys. Chem. C. 124(13), 7229–7237 (2020). https://doi.org/10.1021/acs.jpcc.9b11529

    Article  Google Scholar 

  38. L. Yan, J. Shao, Y. Li, Electronic shell study of prolate Lin (n= 15–17) clusters: magnetic superatomic molecules. Chin. Phys. B. 29(12), 125101 (2020). https://doi.org/10.1088/1674-1056/abb669

    Article  Google Scholar 

  39. M. Yousofizadeh, E. Shakerzadeh, M. Bamdad, Electronic and nonlinear optical characteristics of the LiBn (n = 4–11) nanoclusters: a theoretical study. Microelectron. Eng. 183, 64–68 (2017). https://doi.org/10.1016/j.mee.2017.10.011

    Article  Google Scholar 

  40. X. Dong, S. Jalife, A. Vásquez-Espinal, J. Barroso, M. Orozco-Ic, E. Ravell, J. Cabellos, W. Liang, Z. Cui, G. Merino, Li2B24: the simplest combination for a three-ring boron tube. Nanoscale 11(5), 2143–2147 (2019). https://doi.org/10.1039/C8NR09173K

    Article  Google Scholar 

  41. W.-L. Li, X. Chen, T. Jian, T.-T. Chen, J. Li, L.-S. Wang, From planar boron clusters to borophenes and metalloborophenes. Nat. Rev. Chem. 1(10), 0071 (2017). https://doi.org/10.1038/s41570-017-0071

    Article  Google Scholar 

  42. Y. Wang, J. Lv, L. Zhu, Y. Ma, Crystal structure prediction via particle-swarm optimization. Phys. Rev. B. 82(9), 094116 (2010). https://doi.org/10.1103/PhysRevB.82.094116

    Article  ADS  Google Scholar 

  43. J. Lv, Y. Wang, L. Zhu, Y. Ma, Particle-swarm structure prediction on clusters. J. Chem. Phys. 137(8), 084104 (2012). https://doi.org/10.1063/1.4746757

    Article  ADS  Google Scholar 

  44. Y. Wang, J. Lv, L. Zhu, Y. Ma, CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183(10), 2063–2070 (2012). https://doi.org/10.1016/j.cpc.2012.05.008

    Article  ADS  Google Scholar 

  45. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT. See also: URL: http://www.gaussian.com. (2009).

  46. Y. Wang, J. Lv, L. Zhu, S. Lu, K. Yin, Q. Li, H. Wang, L. Zhang, Y. Ma, Materials discovery via CALYPSO methodology. J. Phys.: Condens. Matter. 27(20), 203203 (2015). https://doi.org/10.1088/0953-8984/27/20/203203

    Article  ADS  Google Scholar 

  47. C.-G. Li, Z.-G. Shen, J. Zhang, Y.-Q. Cui, J.-J. Li, H.-Y. Xue, H.-F. Li, B.-Z. Ren, Y.-F. Hu, Analysis of the structures, stabilities and electronic properties of MB16−(M = V, Cr, Mn, Fe Co, Ni) clusters and assemblies. New J. Chem. 44(13), 5109–5119 (2020). https://doi.org/10.1039/C9NJ06335H

    Article  Google Scholar 

  48. B. Gao, P. Gao, S. Lu, J. Lv, Y. Wang, Y. Ma, Interface structure prediction via CALYPSO method. Sci. Bull. 64(5), 301–309 (2019). https://doi.org/10.1016/j.scib.2019.02.009

    Article  Google Scholar 

  49. E.I. Moreira, B. Brito, G.-Q. Hai, L. Cândido, Electron correlation effects in boron clusters BQn (for Q =− 1, 0, 1 and n ≤ 13) based on quantum Monte Carlo simulations. Phys. Chem. Chem. Phys. 24(5), 3119–3128 (2022). https://doi.org/10.1039/D1CP04737J

    Article  Google Scholar 

  50. S. Alexander, R. Orbach, Density of states on fractals:«fractons». J. Physique Lett. 43(17), 625–631 (1982). https://doi.org/10.1051/jphyslet:019820043017062500

    Article  Google Scholar 

  51. J. Mintmire, C. White, Universal density of states for carbon nanotubes. Phys. Rev. Lett. 81(12), 2506 (1998). https://doi.org/10.1103/PhysRevLett.81.2506

    Article  ADS  Google Scholar 

  52. T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885

    Article  Google Scholar 

  53. M. Torrent-Sucarrat, J.M. Luis, M. Duran, M. Solà, On the validity of the maximum hardness and minimum polarizability principles for nontotally symmetric vibrations. J. Am. Chem. Soc. 123(32), 7951–7952 (2001). https://doi.org/10.1021/ja015737i

    Article  Google Scholar 

  54. L.R. Murphy, T.L. Meek, A.L. Allred, L.C. Allen, Evaluation and test of pauling’s electronegativity scale. J. Phys. Chem. A. 104(24), 5867–5871 (2000). https://doi.org/10.1021/jp000288e

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Innovation Fund of Postgraduate Sichuan University of Science & Engineering (Grant No. y2021008, Y2022014), the Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing (Grant No. 2020QYJ02), and the Innovation and Entrepreneurship Training Program of Sichuan Province (Grant No. S202110622032). This work was supported by Sichuan University of Science & Engineering High Performance Computing Center provided computational.

Author information

Authors and Affiliations

Authors

Contributions

YYW: Investigation, writing-original draft. YQY: Investigation, methodology. YYL: Writing—review and editing, investigation, software. HY: Supervision, funding acquisition. JHG: Investigation, visualization. GLC: Conceptualization, funding acquisition. YFH: Software, funding acquisition. JY: Data curation.

Corresponding author

Correspondence to Yu Quan Yuan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 302 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y.Y., Yuan, Y.Q., Li, Y.Y. et al. Theoretical study of geometry and electronic properties of medium-sized doped clusters Li2Bn0/− (n = 1–12). Eur. Phys. J. D 77, 114 (2023). https://doi.org/10.1140/epjd/s10053-023-00668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00668-8

Navigation