Skip to main content
Log in

Structural and electronic properties of neutral boron clusters doped with two potassium atoms

  • Original Paper - Condensed Matter
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

This paper reports a systematic study on the doping of two potassium atoms in small-sized neutral boron clusters. The CALYPSO software in conjunction with DFT was used to anticipate the low-energy structures, optimize their geometry, and adjust their energies. With increasing size, the structural development of the K2Bn (n = 1–12) clusters was revealed, and we discovered that the majority of their ground-state structural isomers structurally inherited well from the corresponding ground-state isomers of pure B clusters. A fresh finding was made after confirming the NPA (natural population analysis) of the low-lying K2Bn (n = 1–12): every doped K atom in the structure has a positive charge. According to relative stability analysis, the most stable K2B8 cluster within the parameters of our investigation has a HOMO–LUMO gap of 3.31 eV. Strong interactions between K-4s and B-2P AO were also discovered through an additional examination of the molecular orbitals and bonds of K2B8 clusters. These interactions may be the primary cause of K2B8's exceptional stability. We hope that our research will be useful in the future for synthesizing and using doped boron-based nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.-G. Jang et al., Synthesis of dimesitylborane-substituted phenylcarbazoles as bipolar host materials and the variation of the green PHOLED performance with the substituent position of the boron atom. Dalton Trans. 43(21), 7712–7715 (2014)

    Article  Google Scholar 

  2. M.-S. Lin et al., A diarylborane-substituted carbazole as a universal bipolar host material for highly efficient electrophosphorescence devices. J. Mater. Chem. 22(3), 870–876 (2012)

    Article  Google Scholar 

  3. M.-M. Xue et al., De novo design of boron-based host materials for highly efficient blue and white phosphorescent OLEDs with low efficiency roll-off. ACS Appl. Mater. Interfaces. 8(31), 20230–20236 (2016)

    Article  Google Scholar 

  4. J.-I. Aihara, B13+ is highly aromatic. J. Phys. Chem. A 105(22), 5486–5489 (2001)

    Article  Google Scholar 

  5. I. Boustani, Systematic lsd investigation on cationic boron clusters: B (n 2–14). Int. J. Quant. Chem. 52(4), 1081–1111 (1994)

    Article  Google Scholar 

  6. L. Hanley, J.L. Whitten, S.L. Anderson, Collision-induced dissociation and ab initio studies of boron cluster ions: determination of structures and stabilities. J. Phys. Chem. 92(20), 5803–5812 (1988)

    Article  Google Scholar 

  7. H.J. Zhai et al., Hepta-and octacoordinate boron in molecular wheels of eight-and nine-atom boron clusters: observation and confirmation. Angew. Chem. Int. Ed. 42(48), 6004–6008 (2003)

    Article  Google Scholar 

  8. B. Albert, H. Hillebrecht, Boron: elementary challenge for experimenters and theoreticians. Angew. Chem. Int. Ed. Engl. 48(46), 8640–8668 (2009)

    Article  Google Scholar 

  9. J.-I. Aihara, H. Kanno, T. Ishida, Aromaticity of planar boron clusters confirmed. J. Am. Chem. Soc. 127(38), 13324–13330 (2005)

    Article  Google Scholar 

  10. A.N. Alexandrova et al., Electronic structure, isomerism, and chemical bonding in B7-and B7. J. Phys. Chem. A 108(16), 3509–3517 (2004)

    Article  Google Scholar 

  11. A.N. Alexandrova et al., All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord. Chem. Rev. 250(21–22), 2811–2866 (2006)

    Article  Google Scholar 

  12. K.C. Lau, R. Pandeyl, The 2D–3D structural transition and chemical bonding in. Struct. Propert. Clusters Few Atoms Nanoparticles 5, 116 (2006)

    Google Scholar 

  13. H.-J. Zhai et al., Hydrocarbon analogues of boron clusters—planarity, aromaticity and antiaromaticity. Nat. Mater. 2(12), 827–833 (2003)

    Article  ADS  Google Scholar 

  14. A.P. Sergeeva et al., All-boron analogues of aromatic hydrocarbons: B17− and B18−. J. Chem. Phys. 134(22), 224304 (2011)

    Article  ADS  Google Scholar 

  15. A.P. Sergeeva et al., Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47(4), 1349–1358 (2014)

    Article  Google Scholar 

  16. M.P. Johansson, On the strong ring currents in B20 and neighboring boron toroids. J. Phys. Chem. C 113(2), 524–530 (2009)

    Article  Google Scholar 

  17. L.-S. Wang, Photoelectron spectroscopy of size-selected boron clusters: from planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 35(1), 69–142 (2016)

    Article  ADS  Google Scholar 

  18. H.-J. Zhai et al., Observation of an all-boron fullerene. Nat. Chem. 6(8), 727–731 (2014)

    Article  ADS  Google Scholar 

  19. T.R. Galeev et al., Observation of the highest coordination number in planar species: decacoordinated Ta© B10− and Nb© B10− anions. Angew. Chem. Int. Ed. 51(9), 2101–2105 (2012)

    Article  Google Scholar 

  20. W.-L. Li et al., Aluminum avoids the central position in AlB9–and AlB10–: photoelectron spectroscopy and ab Initio study. J. Phys. Chem. A 115(38), 10391–10397 (2011)

    Article  Google Scholar 

  21. C. Romanescu et al., Aromatic metal-centered monocyclic boron rings: Co© B8− and Ru© B9−. Angew. Chem. 123(40), 9506–9509 (2011)

    Article  ADS  Google Scholar 

  22. I.A. Popov et al., Complexes between planar boron clusters and transition metals: a photoelectron spectroscopy and ab initio study of CoB12–and RhB12–. J. Phys. Chem. A 118(37), 8098–8105 (2014)

    Article  Google Scholar 

  23. A.N. Alexandrova et al., Molecular wheel B82-as a new inorganic ligand. Photoelectron spectroscopy and ab initio characterization of LiB8. Inorgan. Chem. 43(12), 3552–3554 (2004)

    Article  Google Scholar 

  24. J.-B. Gu et al., Structural, electronic, and magnetic properties of boron cluster anions doped with aluminum: BnAl−(2≤ n≤ 9). Chin. Phys. B 21(4), 043102 (2012)

    Article  ADS  Google Scholar 

  25. Z.-F. Liu et al., A density-functional theory for (BAs) n clusters (n= 1–14): structures, stabilities and electronic properties. Chin. Phys. B 20(2), 023101 (2011)

    Article  ADS  Google Scholar 

  26. H.-J. Zhai et al., Electronic structure and chemical bonding of B 5− and B 5 by photoelectron spectroscopy and ab initio calculations. J. Chem. Phys. 117(17), 7917–7924 (2002)

    Article  ADS  Google Scholar 

  27. J. Lv et al., Particle-swarm structure prediction on clusters. J. Chem. Phys. 137(8), 084104 (2012)

    Article  ADS  Google Scholar 

  28. Y. Wang et al., Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82(9), 094116 (2010)

    Article  ADS  Google Scholar 

  29. Y. Wang et al., CALYPSO: a method for crystal structure prediction. Comput. Phys. Commun. 183(10), 2063–2070 (2012)

    Article  ADS  Google Scholar 

  30. D. Die et al., The ground-state structure, optical-absorption and photoelectron spectrum of silver clusters. Phys. E 117, 113805 (2020)

    Article  Google Scholar 

  31. L.-P. Ding et al., Structures, mobilities, and electronic properties of functionalized silicene: Superhalogen BO2 adsorption. Inorg. Chem. 59(7), 5041–5049 (2020)

    Article  Google Scholar 

  32. Y.-W. Fan, H.-Q. Wang, H.-F. Li, Structural and electronic properties of exohedrally doped neutral silicon clusters LnSi n (n= 5, 10; Ln= Sm, Eu, Yb). Phys. Chem. Chem. Phys. 22(36), 20545–20552 (2020)

    Article  Google Scholar 

  33. L. Lai et al., Growth mechanism and electronic and magnetic properties of AgnTi alloy clusters. J. Phys. Chem. Solids 148, 109757 (2021)

    Article  Google Scholar 

  34. C.-G. Li et al., Analysis of the structures, stabilities and electronic properties of MB 16−(M= V, Cr, Mn, Fe Co, Ni) clusters and assemblies. New J. Chem. 44(13), 5109–5119 (2020)

    Article  Google Scholar 

  35. C.-G. Li et al., A comparative study of Cu n X (X= Sc, Y; n= 1–10) clusters based on the structures, and electronic and aromatic properties. New J. Chem. 43(17), 6597–6606 (2019)

    Article  ADS  Google Scholar 

  36. Z. Li et al., The selectivity of the transition metal encapsulated in fullerene-like B36 clusters. Chem. Phys. Lett. 757, 137876 (2020)

    Article  Google Scholar 

  37. C. Lu, C. Chen, Indentation strengths of zirconium diboride: intrinsic versus extrinsic mechanisms. J. Phys. Chem. Lett. 12(11), 2848–2853 (2021)

    Article  Google Scholar 

  38. C. Lu et al., Elucidating stress–strain relations of ZrB12 from first-principles studies. J. Phys. Chem. Lett. 11(21), 9165–9170 (2020)

    Article  Google Scholar 

  39. Y.R. Zhao et al., Probing the structural and electronic properties of neutral and anionic lanthanum-doped silicon clusters. J. Phys. Chem. C 123(47), 28561–28568 (2019)

    Article  Google Scholar 

  40. S.M. Bouzzine et al., Density functional theory (B3LYP/6-31G*) study of oligothiophenes in their aromatic and polaronic states. J. Mol. Struct. (Thoechem.) 726(1–3), 271–276 (2005)

    Article  Google Scholar 

  41. J.E. Del Bene, W.B. Person, K. Szczepaniak, Properties of hydrogen-bonded complexes obtained from the B3LYP functional with 6–31G (d, p) and 6–31+ G (d, p) basis sets: comparison with MP2/6-31+ G (d, p) results and experimental data. J. Phys. Chem. 99(27), 10705–10707 (1995)

    Article  Google Scholar 

  42. H. Kruse, L. Goerigk, S. Grimme, Why the standard B3LYP/6-31G* model chemistry should not be used in DFT calculations of molecular thermochemistry: understanding and correcting the problem. J. Org. Chem. 77(23), 10824–10834 (2012)

    Article  Google Scholar 

  43. J. Tirado-Rives, W.L. Jorgensen, Performance of B3LYP density functional methods for a large set of organic molecules. J. Chem. Theory Comput. 4(2), 297–306 (2008)

    Article  Google Scholar 

  44. T.M. Krygowski, J.E. Zachara, H. Szatylowicz, Molecular geometry as a source of chemical information. 3. How H-bonding affects aromaticity of the ring in the case of phenol and p-nitrophenol complexes: A B3LYP/6–311+ G** study. J. Org. Chem. 69(21), 7038–7043 (2004)

    Article  Google Scholar 

  45. X. Li et al., Pentaatomic tetracoordinate planar carbon,[CAl4] 2−: a new structural unit and its salt complexes. Angew. Chem. 112(20), 3776–3778 (2000)

    Article  ADS  Google Scholar 

  46. Z. Liu, T. Lu, Q. Chen, An sp-hybridized all-carboatomic ring, cyclo [18] carbon: Electronic structure, electronic spectrum, and optical nonlinearity. Carbon 165, 461–467 (2020)

    Article  Google Scholar 

  47. F. Weigend, Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8(9), 1057–1065 (2006)

    Article  Google Scholar 

  48. F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7(18), 3297–3305 (2005)

    Article  Google Scholar 

  49. M. Frisch et al., in Gaussian 09, revision D. 01. 2009, Gaussian, Inc., Wallingford CT (2009)

  50. M.E. Frisch et al., in Gaussian, Inc., Wallingford CT. Wallingford CT (2009).

  51. T. Lu, F.-W. Chen, Meaning and functional form of the electron localization function. Acta Phys. Chim. Sin. 27(12), 2786–2792 (2011)

    Article  Google Scholar 

  52. D.Y. Zubarev, A.I. Boldyrev, Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10(34), 5207–5217 (2008)

    Article  Google Scholar 

  53. L. Cheng, B14: an all-boron fullerene. J. Chem. Phys. 136(10), 104301 (2012)

    Article  ADS  Google Scholar 

  54. R. Kawai, J. Weare, Instability of the B12 icosahedral cluster: rearrangement to a lower energy structure. J. Chem. Phys. 95(2), 1151–1159 (1991)

    Article  ADS  Google Scholar 

  55. A. Jalbout, S. Fernandez, Part II. Gaussian, complete basis set and density functional theory stability evaluation of the singlet states of Cn (n= 1–6): energy differences, HOMO–LUMO band gaps, and aromaticity. J. Mol. Struct. Theochem. 584(1–3), 169–182 (2002)

    Article  Google Scholar 

  56. J.-I. Aihara, Weighted HOMO-LUMO energy separation as an index of kinetic stability for fullerenes. Theoret. Chem. Acc. 102, 134–138 (1999)

    Article  Google Scholar 

  57. R. Rakhi, C.H. Suresh, A DFT study on dihydropyrazine annulated linear polyacenes: aromaticity, stability and HOMO–LUMO energy modulation. Phys. Chem. Chem. Phys. 18(35), 24631–24641 (2016)

    Article  Google Scholar 

  58. S. Neukermans et al., Extremely stable metal-encapsulated AlPb 10+ and AlPb 12+ clusters: mass-spectrometric discovery and density functional theory study. Phys. Rev. Lett. 92(16), 163401 (2004)

    Article  ADS  Google Scholar 

  59. S. Burkart et al., Experimental verification of the high stability of Al13H: a building block of a new type of cluster material? Chem. Phys. Lett. 301(5–6), 546–550 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Innovation Fund of Postgraduate Sichuan University of Science & Engineering (Grant No. y2021008, Y2022013, Y2022014), the Cultivating Program of Young and Middle-aged Backbone Teachers of Chengdu University of Technology (No. 10912-JXGG2022-09146), and the Innovation and Entrepreneurship Training Program of Sichuan Province (Grant No. S202110622032). This work was supported by Sichuan University of Science & Engineering High Performance Computing Center provided computational.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Quan Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G.L., Yuan, Y.Q., Wang, C.P. et al. Structural and electronic properties of neutral boron clusters doped with two potassium atoms. J. Korean Phys. Soc. 82, 1171–1179 (2023). https://doi.org/10.1007/s40042-023-00789-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00789-8

Keywords

Navigation