Skip to main content
Log in

Fotoc complexity in the Lipkin–Meshkov–Glick model and its variant

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study fidelity out-of-time-order correlators (FOTOCs) in the Lipkin–Meshkov–Glick (LMG) model and one of its variants dubbed as the extended LMG model. We demonstrate that these exhibit distinctive behaviour at quantum phase transitions (QPTs) in both the ground and the excited states. We show that the dynamics of the FOTOC have different behaviour in the symmetric and broken phases and as one approaches QPT. Rescaling the FOTOC operator with time, we establish that for small times the rescaled operator is identical to the Loschmidt echo. We also compute the Nielsen complexity of the FOTOC operator for both models and apply this operator on the ground and excited states to obtain the quasi-scrambled states. The FOTOC operator introduces a small perturbation on the original ground and excited states. For this perturbed state, we compute the quantum information metric to first and second order in perturbation, in the thermodynamic limit. We find that the associated Ricci scalar does not show any divergence or discontinuity at QPTs in the LMG model. Instead, the amplitude of oscillations is relatively lower in the symmetric phase than in the broken phase. However, in the case of extended LMG model, the Ricci scalar diverges at the QPT from the broken phase side, in contrast to the zeroth order result. Finally, we comment upon the Fubini-Study complexity in the extended LMG model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availibility Statement

Our manuscript has no associated data.

References

  1. A. Larkin, Y.N. Ovchinnikov, Sov. Phys. JETP 28, 1200 (1969)

    ADS  Google Scholar 

  2. J. Chavez-Carlos, B. Lopez-del-Carpio, M.A. Bastarrachea-Magnani, P. Stransky, S. Lerma-Hernandez, L.F. Santos, J.G. Hirsch, Phys. Rev. Lett. 122, 024101 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. T. Akutagawa, K. Hashimoto, T. Sasaki, R. Watanabe, J. High Energy Phys. 08, 013 (2020)

    Article  ADS  Google Scholar 

  4. K. Hashimoto, K. Murata, R. Yoshii, J. High Energy Phys. 10, 138 (2017)

    Article  ADS  Google Scholar 

  5. E.B. Rozenbaum, S. Ganeshan, V. Galitski, Phys. Rev. Lett. 118, 086801 (2017)

    Article  ADS  PubMed  Google Scholar 

  6. B. Swingle, G. Bentsen, M. Schleier-Smith, P. Hayden, Phys. Rev. A 94, 040302(R) (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Garttner, P. Hauke, A.M. Rey, Phys. Rev. Lett. 120, 040402 (2018)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  8. A.W. Harrow, L. Kong, Z.W. Liu, S. Mehraban, P.W. Shor, Phys. Rev. X Quantum 2, 020339 (2021)

    ADS  Google Scholar 

  9. H. Shen, P. Zhang, R. Fan, H. Zhai, Phys. Rev. B 96, 054503 (2017)

    Article  ADS  Google Scholar 

  10. Q. Wang, F.P. Bernal, Phys. Rev. A 100, 062113 (2019)

    Article  ADS  CAS  Google Scholar 

  11. R.A. Kidd, A. Safavi-Naini, J.F. Corney, Phys. Rev. A 102, 023330 (2020)

    Article  ADS  CAS  Google Scholar 

  12. M. Heyl, F. Pollmann, B. Dora, Phys. Rev. Lett. 121, 016801 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. R.K. Shukla, G.K. Naik, S.K. Mishra, Europhys. Lett. 132, 47003 (2021)

    Article  Google Scholar 

  14. K.B. Huh, K. Ikeda, V. Jahnke, K.Y. Kim, Phys. Rev. E 104, 024136 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. J. Khalouf-Rivera, J. Gamito, F. Perez-Bernal, J. M. Arias, P. Perez-Fernandez, arXiv:2207.04489 [quant-ph]

  16. A. Banerjee, A. Bhattacharyya, P. Drashni, S. Pawar, Phys. Rev. D 106, 126022 (2022)

    Article  ADS  CAS  Google Scholar 

  17. A. Bhattacharyya, W. Chemissany, S. Shajidul Haque, and B. Yan, Eur. Phys. J. C 82, 87 (2022)

  18. A. Bhattacharyya, D. Ghosh, and P. Nandi, arXiv:2306.05542 [hep-th]

  19. A. Bhattacharyya, S. Das, S. Shajidul Haque, B. Underwood, Phys. Rev. D 101, 106020 (2020)

  20. A. Bhattacharyya, L.K. Joshi, B. Sundar, Eur. Phys. J. C 82, 458 (2022)

    Article  ADS  CAS  Google Scholar 

  21. S. Choudhury, Symmetry 12, 1527 (2020)

    Article  ADS  CAS  Google Scholar 

  22. K.Y. Bhagat, B. Bose, S. Choudhury, S. Chowdhury, R.N. Das, S.G. Dastider, N. Gupta, A. Maji, G.D. Pasquino, S. Paul, Symmetry 13, 44 (2020)

    Article  ADS  Google Scholar 

  23. S. Choudhury, Symmetry 13, 599 (2021)

    Article  ADS  CAS  Google Scholar 

  24. C.-J. Lin, O.I. Motrunich, Phys. Rev. B 97, 144304 (2018)

    Article  ADS  CAS  Google Scholar 

  25. C.-J. Lin, O.I. Motrunich, Phys. Rev. B 98, 134305 (2018)

    Article  ADS  CAS  Google Scholar 

  26. K. Hashimoto, K.-Bum Huh, K.-Young Kim, R. Watanabe, J. High Energy Phys. 11, 068 (2020)

  27. R.J. Lewis-Swan, A. Safavi-Naini, J.J. Bollinger, A.M. Rey, Nat. Commun. 10, 1581 (2019)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. S. Pilatowsky-Cameo, J. Chavez-Carlos, M.A. Bastarrachea-Magnani, P. StranskýLerma-Hernandez, L.F. Santos, J.G. Hirsch, Phys. Rev. E 101, 010202(R) (2020)

    Article  ADS  Google Scholar 

  29. A. Safavi-Naini, R.J. Lewis-Swan, J.G. Bohnet, M. Garttner, K.A. Gilmore, J.E. Jordan, J. Cohn, J.K. Freericks, A.M. Rey, J.J. Bollinger, Phys. Rev. Lett. 121, 040503 (2018)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. M.K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier, P. Zoller, R. Blatt, C.F. Roos, Phys. Rev. Lett. 124, 240505 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. A.M. Green, A. Elben, C.H. Alderete, L.K. Joshi, N.H. Nguyen, T.V. Zache, Y. Zhu, B. Sundar, N.M. Linke, Phys. Rev. Lett. 128, 140601 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  32. K.A. Landsman, C. Figgatt, T. Schuster, N.M. Linke, B. Yoshida, N.Y. Yao, C. Monroe, Nature (London) 567, 61 (2019)

    Article  ADS  CAS  PubMed  Google Scholar 

  33. M. Garttner et al., Nat. Phys. 13, 781–786 (2017)

    Article  CAS  Google Scholar 

  34. H.J. Lipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188 (1965)

    Article  CAS  Google Scholar 

  35. S. Dusuel, J. Vidal, Phys. Rev. B 71, 224420 (2005)

    Article  ADS  Google Scholar 

  36. P. Ribeiro, J. Vidal, R. Mosseri, Phys. Rev. Lett. 99, 050402 (2007)

    Article  ADS  PubMed  Google Scholar 

  37. J. Vidal, R. Mosseri, J. Dukelsky, Phys. Rev. A 69, 054101 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  38. J. Vidal, G. Palacios, C. Aslangul, Phys. Rev. A 70, 062304 (2004)

    Article  ADS  Google Scholar 

  39. H. Man Kwok, W. Qiang Ning, S. Jian Gu, and H. Qing Lin, Phys. Rev. E 78, 032103 (2008)

  40. Q. Wang, P. Wang, Y. Yang, and W. Ge Wang, Phys. Rev. A 91, 042102 (2015)

  41. R. Botet, R. Jullien, P. Pfeuty, Phys. Rev. Lett. 49, 478 (1982)

    Article  ADS  CAS  Google Scholar 

  42. R. Botet, R. Jullien, Phys. Rev. B 28, 3955 (1982)

    Article  ADS  Google Scholar 

  43. J. Vidal, Phys. Rev. A 73, 062318 (2006)

    Article  ADS  Google Scholar 

  44. D. Gutierrez-Ruiz, D. Gonzalez, J. Chavez-Carlos, J. Hirsch, J.D. Vergara, Phys. Rev. B 103, 174104 (2021)

    Article  ADS  CAS  Google Scholar 

  45. M.A. Nielsen, M.R. Dowling, M. Gu, A.C. Doherty, Science 311, 1133 (2006)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  46. M. A. Nielsen, arXiv:quant-ph/0502070; M. R. Dowling and M. A. Nielsen, arXiv:quant-ph/0701004

  47. L.C. Qu, J. Chen, Y.X. Liu, Phys. Rev. D 105, 126015 (2022)

    Article  ADS  CAS  Google Scholar 

  48. T. Ali, A. Bhattacharyya, S.S. Haque, E.H. Kim, N. Moynihan, J. Murugan, Phys. Rev. D 101, 026021 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  49. A. Bhattacharyya, W. Chemissany, S.S. Haque, J. Murugan, B. Yan, SciPost Phys. Core 4, 002 (2021)

    Article  Google Scholar 

  50. A. Bhattacharyya, G. Katoch, S.R. Roy, Eur. Phys. J. C 83, 33 (2023)

    Article  ADS  CAS  Google Scholar 

  51. A. Bhattacharyya, T. Hanif, S. Shajidul Haque, and Md. Khaledur Rahman, Phys. Rev. D 105, 046011 (2022)

  52. A. Bhattacharyya, P. Nandi, J. High Energy Phys. 07, 105 (2023)

    Article  ADS  Google Scholar 

  53. A. Bhattacharyya, S. Shajidul Haque, and E. H. Kim, J. High Energy Phys. 2110 (2021) 028

  54. A. Bhattacharyya, A. Shekar, A. Sinha, J. High Energy Phys. 1810, 140 (2018)

    Article  ADS  Google Scholar 

  55. A. Bhattacharyya, A. Bhattacharyya, and S. Maulik, Phys. Rev. D 106, 086010

  56. T. Ali, A. Bhattacharyya, S.S. Haque, E.H. Kim, N. Moynihan, J. High Energy Phys. 1904, 087 (2019)

    Article  ADS  Google Scholar 

  57. S. Choudhury, A. Dutta, D. Ray, J. High Energy Phys. 04, 138 (2021)

    Article  ADS  Google Scholar 

  58. F. Liu, S. Whitsitt, J.B. Curtis, R. Lundgren, P. Titum, Z.C. Yang, J.R. Garrison, A.V. Gorshkov, Phys. Rev. Res. 2, 013323 (2020)

    Article  CAS  Google Scholar 

  59. S. S. Haque, C. Jana, and B. Underwood, arXiv:2110:08356 [hep-th]

  60. S. Choudhury, R.M. Gharat, S. Mandal, N. Pandey, Symmetry 15(3), 655 (2023)

    Article  ADS  Google Scholar 

  61. K. Adhikari, S. Choudhury, S. Kumar, S. Mandal, N. Pandey, A. Roy, S. Sarkar, P. Sarker, and S. Salman Shariff, Symmetry 15(1), 31 (2023)

    Article  ADS  Google Scholar 

  62. S. Choudhury, S. Chowdhury, N. Gupta, A. Mishara, S. Panneer Selvam, S. Panda, G. D.Pasquino, C. Singha, and A. Swain, Symmetry 13(7), 1301 (2021)

  63. M. Guo, J. Hernandez, R.C. Myers, S.-M. Ruan, J. High Energy Phys. 10, 011 (2018)

    Article  ADS  Google Scholar 

  64. N. Jaiswal, M. Gautam, T. Sarkar, Phys. Rev. E 104, 024127 (2021)

    Article  ADS  CAS  PubMed  Google Scholar 

  65. N. Jaiswal, M. Gautam, and T. Sarkar, J. Stat. Mech. (2022), 073105

  66. M. Gautam, N. Jaiswal, A. Gill, and T. Sarkar, J. Stat. Mech. (2023), 053104

  67. K. Pal, K. Pal, T. Sarkar, Phys. Rev. E 107, 044130 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  68. K. Pal, K. Pal, T. Sarkar, Phys. Rev. E 105, 064117 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  69. K. Adhikari, S. Choudhury, A. Roy, Nucl. Phys. B 993, 116263 (2023)

    Article  CAS  Google Scholar 

  70. K. Adhikari, S. Choudhury, Fortschr. Phys. 70, 2200126 (2022)

    Article  Google Scholar 

  71. P. Caputa, J.M. Magan, D. Patramanis, Phys. Rev. Res. 4, 013041 (2022)

    Article  CAS  Google Scholar 

  72. A. Bhattacharyya, S. Shajidul Haque, G. Jafari, J. Murugan, and D. Rapotu, J. High Energy Phys. 10 (2023) 157

  73. A. Bhattacharyya, D. Ghosh, P. Nandi, arXiv:2306.05542 [hep-th]

  74. B. Bhattacharjee, S. Sur, P. Nandy, Phys. Rev. B 106, 205150 (2022)

    Article  ADS  CAS  Google Scholar 

  75. K. Pal, K. Pal, A. Gill, T. Sarkar, Phys. Rev. B 108, 104311 (2023)

    Article  ADS  CAS  Google Scholar 

  76. M. Afrasiar, J. Kumar Basak, B. Dey, K. Pal, and K. Pal, J. Stat. Mech. 103101 (2023)

  77. M. Gautam, N. Jaiswal, A. Gill, arXiv:2305.12115 [quant-ph]

  78. M. Gautam, K. Pal, K. Pal, A. Gill, N. Jaiswal, T. Sarkar, arXiv:2308.00636 [quant-ph]

  79. V. Balasubramanian, P. Caputa, J.M. Magan, Q. Wu, Phys. Rev. D 106, 046007 (2022)

  80. A. Bhattacharyya, S. Das, S. Shajidul Haque, B. Underwood, Phys. Rev. Res. 2, 033273 (2020)

  81. B. Swingle, Nat. Phys. 14, 988 (2018)

    Article  CAS  Google Scholar 

  82. X. Mi et al., arXiv:2101.08870 [quant-ph]

  83. S. Xu, and B. Swingle, arXiv:2202.07060 [quant-ph]

  84. Q. Zhuang, T. Schuster, B. Yoshida, N.Y. Yao, Phys. Rev. A 99, 062334 (2019)

    Article  ADS  CAS  Google Scholar 

  85. B. Yan, L. Cincio, W.H. Zurek, Phys. Rev. Lett. 124, 160603 (2020)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  86. A. Dey, S. Mahapatra, P. Roy, T. Sarkar, Phys. Rev. E 86, 031137 (2012)

    Article  ADS  Google Scholar 

  87. M. Miyaji, J. High Energy Phys. 09, 002 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  88. R. Maity, S. Mahapatra, T. Sarkar, Phys. Rev. E 92, 052101 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  89. N. Zettili, Quantum mechanics: concepts and applications, 2nd ed. (John Wiley and Sons, Ltd)

  90. D.D. Scherer, C.A. Muller, M. Kastner, J. Phys. A: Math. Theor. 42, 465304 (2009)

    Article  ADS  Google Scholar 

  91. S.H. Shenker, D. Stanford, J. High Energy Phys. 03, 067 (2014)

    Article  ADS  Google Scholar 

  92. D.A. Roberts, D. Stanford, L. Susskind, J. High Energy Phys. 03, 051 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for constructive comments that helped to improve a draft version of this paper. We thank Kunal Pal and Kuntal Pal for numerous fruitful discussions. We thank J. Vidal for a comment and for pointing out important references. The work of TS is supported in part by the USV Chair Professor position at the Indian Institute of Technology, Kanpur.

Author information

Authors and Affiliations

Authors

Contributions

NJ did most of the calculations, performed the analysis, and wrote the manuscript. MG, AG and TS did part of the calculations and analysis. All work was done under the supervision of TS, who edited the manuscript as required and administered the project.

Corresponding author

Correspondence to Nitesh Jaiswal.

Ethics declarations

Conflict of interest

The authors have no conflicts of interests to declare.

Appendices

Appendix A

In this section, we present a detailed calculation of the NC for LMG model following [49]. We apply Nielsen’s geometric approach to find the optimal circuit. The first step is to parametrize the unitary as a path-ordered exponential

$$\begin{aligned} U(\tau )=\overleftarrow{\mathcal {P}}\exp \left( \int _{0}^{\tau } d\tau ^{\prime }H(\tau ^{\prime })\right) , \end{aligned}$$
(A1)

with \(H(\tau ^{\prime })=\sum _{I\in \{1,3\}}Y^{I}(\tau ^{\prime })M_{I}\), \(Y^{I}(\tau ^{\prime })\) are control functions and specifies a particular circuit in the space of unitaries, and \(M_{I}\) are the three-dimensional representation of the Heisenberg group generators

$$\begin{aligned} M_{1}= \begin{bmatrix} 0&{}1&{}0\\ 0&{}0&{}0\\ 0&{}0&{}0\\ \end{bmatrix} ,\quad M_{2}= \begin{bmatrix} 0&{}0&{}0\\ 0&{}0&{}1\\ 0&{}0&{}0\\ \end{bmatrix} ,\quad M_{3}= \begin{bmatrix} 0&{}0&{}1\\ 0&{}0&{}0\\ 0&{}0&{}0\\ \end{bmatrix}, \end{aligned}$$
(A2)

satisfying the Heisenberg algebra. The explicit form of the functions \(Y^{I}(\tau )\) can be evaluated by using Eq. (A1) and the expressions of \(M_{I}\),

$$\begin{aligned} Y^{I}(\tau )=-\text {Tr}\left[ (\partial _{\tau }U(\tau )) U^{-1}(\tau )M_{I}^{T}\right] .~ \end{aligned}$$
(A3)

By following the usual procedure [58], we can define the cost functional for various paths

$$\begin{aligned} \mathcal {D}[U(\tau )]=\int _{0}^{1}d\tau ^{\prime }\sum _{I}|Y^{I}(\tau ^{\prime })|^{2},~ \end{aligned}$$
(A4)

where we followed \(\kappa =2\) cost functions. Note that the \(\kappa =2\) cost function and the \(F_{2}\) cost function will provide the exact same extremal trajectories or optimal circuits [63]. The minimal value of the above cost functional will give the required complexity, and it can be obtained by evaluating it on the geodesics of unitary space with the boundary conditions

$$\begin{aligned} \tau =0,\,U(\tau =0)=\mathbb {1},\quad \tau =1,\,U(\tau =1)=\hat{W}_{ls,lb}(t).~ \end{aligned}$$
(A5)

We first represent the FOTOC operator in Heisenberg group generators as

$$\begin{aligned} \hat{W}_{ls}(t)= & {} e^{\varepsilon \left( \cos \left( \omega _{ls}t\right) M_{1} +\sqrt{\frac{h-\Upsilon }{h-1}}\sin \left( \omega _{ls}t\right) M_{2}\right) },\nonumber \\ \hat{W}_{lb}(t)= & {} e^{\varepsilon \left( \cos \left( \omega _{lb}t\right) M_{1}-\sqrt{\frac{1-\Upsilon }{1-h^{2}}}\sin \left( \omega _{lb}t\right) M_{2}\right) }, \end{aligned}$$
(A6)

which is solved as,

$$\begin{aligned} \hat{W}_{ls}(t)= & {} \begin{bmatrix} 1&{}\varepsilon \cos \left( \omega _{ls}t\right) &{}\frac{\varepsilon ^{2}}{4}\sqrt{\frac{h-\Upsilon }{h-1}} \sin \left( 2\omega _{ls}t\right) \\ 0&{}1&{}\varepsilon \sqrt{\frac{h-\Upsilon }{h-1}} \sin \left( \omega _{ls}t\right) \\ 0&{}0&{}1\\ \end{bmatrix},\nonumber \\ \hat{W}_{lb}(t)= & {} \begin{bmatrix} 1&{}\varepsilon \cos \left( \omega _{lb}t\right) &{} -\frac{\varepsilon ^{2}}{4}\sqrt{\frac{1-\Upsilon }{1-h^{2}}}\sin \left( 2\omega _{lb}t\right) \\ 0&{}1&{}-\varepsilon \sqrt{\frac{1-\Upsilon }{1-h^{2}}} \sin \left( \omega _{lb}t\right) \\ 0&{}0&{}1\\ \end{bmatrix}.\nonumber \\ \end{aligned}$$
(A7)

In general, we can parametrize an element of Heisenberg group by \(U(\tau )\) where,

$$\begin{aligned} U(\tau )=\begin{bmatrix} 1&{}x_{1}(\tau )&{}x_{3}(\tau )\\ 0&{}1&{}x_{2}(\tau )\\ 0&{}0&{}1\\ \end{bmatrix}, \end{aligned}$$
(A8)

then the Eq. (A4) can be written in the form:

$$\begin{aligned} \mathcal {D}[U(\tau )]= & {} \int _{0}^{1}d\tau \Bigg ((1+x_{2}^{2})\left( \frac{dx_{1}}{d\tau }\right) ^{2}+ \left( \frac{dx_{2}}{d\tau }\right) ^{2}+\nonumber \\{} & {} \left( \frac{dx_{3}}{d\tau }\right) ^{2}-2x_{2} \left( \frac{dx_{1}}{d\tau }\right) \left( \frac{dx_{3}}{d\tau }\right) \Bigg ). \end{aligned}$$
(A9)

The geodesic equations corresponding to the above metric are

$$\begin{aligned} \dot{x}_{2}(x_{2}\dot{x}_{1}-\dot{x}_{3})+\ddot{x}_{1}=0,{} & {} \dot{x}_{1}(-x_{2}\dot{x}_{1}- \dot{x}_{3})+\ddot{x}_{2}=0,\nonumber \\ \dot{x}_{2}((x_{2}^{2}-1)\dot{x}_{1}-x_{2}\dot{x}_{3})+\ddot{x}_{3}= & {} 0, \end{aligned}$$
(A10)

where the dot represents the derivative with respect to \(\tau \), and is solved using above boundary conditions for the symmetric phase to get

$$\begin{aligned} x_{1}(\tau )= & {} \varepsilon \cos \left( \omega _{ls}t\right) \tau ,\quad x_{2}(\tau )=\varepsilon \sqrt{\frac{h-\Upsilon }{h-1}} \sin \left( \omega _{ls}t\right) \tau ,\nonumber \\ x_{3}(\tau )= & {} \frac{\varepsilon ^{2}}{4} \sqrt{\frac{h-\Upsilon }{h-1}}\sin \left( 2\omega _{ls}t\right) \tau ^{2}. \end{aligned}$$
(A11)

Using the above solution in Eq. (A9), the final expression for the NC in the symmetric phase is

$$\begin{aligned} \mathcal {C}_{ls}(t)=\varepsilon ^{2}\left( \cos ^{2} \left( \omega _{ls}t\right) +\frac{h-\Upsilon }{h-1} \sin ^{2}\left( \omega _{ls}t\right) \right) . \end{aligned}$$
(A12)

Similarly, the expression of the NC in the broken phase is

$$\begin{aligned} \mathcal {C}_{lb}(t)=\varepsilon ^{2}\left( \cos ^{2} \left( \omega _{lb}t\right) +\frac{1-\Upsilon }{1-h^{2}} \sin ^{2}\left( \omega _{lb}t\right) \right) . \end{aligned}$$
(A13)

Appendix B

In this Appendix, we will give the proof of Eq. (31) and show the detailed calculation of metric components of the LMG model. From Eq. (26),

$$\begin{aligned} {|{\Psi (t)}\rangle }_{ls,lb}= & {} e^{i\varepsilon \hat{Q}_{ls,lb}(t)}{|{0}\rangle }_{ls,lb},\nonumber \\= & {} e^{i\varepsilon \mathcal {A}_{ls,lb}(t)\gamma _{ls,lb}^{\dagger }} \,e^{i\varepsilon \mathcal {A}_{ls,lb}^{*}(t)\gamma _{ls,lb}}\times \,\nonumber \\{} & {} e^{-\frac{1}{2}([i\varepsilon \mathcal {A}_{ls,lb}(t)\gamma _{ls,lb}^{\dagger },\, i\varepsilon \mathcal {A}_{ls,lb}^{*}(t)\gamma _{ls,lb}])}{|{0}\rangle }_{ls,lb}.\nonumber \\ \end{aligned}$$
(B1)

The last step is written by using the Baker-Campbell-Hausdorff theorem: \(e^{\hat{A}+\hat{B}}=e^{\hat{A}}e^{\hat{B}}e^{-\frac{1}{2}[\hat{A},\,\hat{B}]}\), and \([\hat{A},\,[\hat{A},\,\hat{B}]]=[\hat{B},\,[\hat{A},\,\hat{B}]]=0\) Then,

$$\begin{aligned} {|{\Psi (t)}\rangle }_{ls,lb}= & {} e^{-\frac{\varepsilon ^{2}}{2}|\mathcal {A}_{ls,lb}(t) |^{2}}e^{i\varepsilon \mathcal {A}_{ls,lb}(t) \gamma _{ls,lb}^{\dagger }}{|{0}\rangle }_{ls,lb},\nonumber \\= & {} \sum \limits _{m=0}^{\infty }e^{ -\frac{\varepsilon ^{2}}{2}|\mathcal {A}_{ls,lb}(t)|^{2}} \frac{\left( i\varepsilon \mathcal {A}_{ls,lb}(t)\right) ^{m}}{\sqrt{m!}}{|{m}\rangle }_{ls,lb}.\nonumber \\ \end{aligned}$$
(B2)

This completes the proof of Eq. (31). Next, we turn to the metric components of the LMG model. For simplicity, we only derive the \(g_{hh}\) component in the symmetric phase using real part of Eq. (28),

$$\begin{aligned} g_{hh}= & {} \text {Re}\big [_{ls}\!\!{\langle {\partial _{h} \Psi (t)|\partial _{h}\Psi (t)}\rangle }_{ls} - \nonumber \\{} & {} _{ls}{\langle {\partial _{h}\Psi (t)|\Psi (t)}\rangle }_{ls} {\langle {\Psi (t)|\partial _{h}\Psi (t)}\rangle }_{ls}\big ], \end{aligned}$$
(B3)

and other components follow from the similar calculations. By taking the derivative of Eq. (33) with respect to h, we have up to \(\mathcal {O}(\varepsilon ^{2})\)

$$\begin{aligned} \Big |\frac{\partial \Psi (t)}{\partial h}\Big \rangle _{ls}= & {} \frac{\partial }{\partial h}\left( \!1-\frac{\varepsilon ^{2}}{2}| \mathcal {A}_{ls}(t)|^{2}\!\right) \!\!{|{\psi _{0}}\rangle }_{ls} + i\varepsilon \frac{\partial \mathcal {A}_{ls}(t)}{\partial h} {|{\psi _{1}}\rangle }_{ls}\nonumber \\{} & {} +\left( \!1-\frac{\varepsilon ^{2}}{2}| \mathcal {A}_{ls}(t)|^{2}\!\right) \!\!\Big | \frac{\partial \psi _{0}}{\partial h}\Big \rangle _{ls} + i\varepsilon \mathcal {A}_{ls}(t)\Big |\frac{\partial \psi _{1}}{\partial h}\Big \rangle _{ls} \nonumber \\{} & {} - \frac{\varepsilon ^{2}}{\sqrt{2}}\frac{\partial \mathcal {A}^{2}_{ls}(t)}{\partial h}{|{\psi _{2}}\rangle }_{ls} - \frac{\varepsilon ^{2}}{\sqrt{2}}\mathcal {A}^{2}_{ls}(t)\Big |\frac{\partial \psi _{2}}{\partial h}\Big \rangle _{ls}, \end{aligned}$$
(B4)

with \({|{0}\rangle }\equiv {|{\psi _{0}}\rangle }\), \({|{1}\rangle }\equiv {|{\psi _{1}}\rangle }\), \({|{2}\rangle }\equiv {|{\psi _{2}}\rangle }\), etc. By doing calculations using Eq. (30), the only non-zero terms in the \(g_{hh}\) component are

$$\begin{aligned} g_{hh}= & {} \left( 1-\varepsilon ^{2}|\mathcal {A}_{ls}(t)|^{2}\right) {\langle {\partial _{h}\psi _{0}|\partial _{h}\psi _{0}}\rangle } + \varepsilon ^{2} | \partial _{h}\mathcal {A}_{ls}(t)|^{2}\nonumber \\{} & {} -\frac{\varepsilon ^{2}}{\sqrt{2}}\left( \left( \partial _{h} \mathcal {A}^{2}_{ls}(t)\right) ^{*}{\langle {\psi _{2}|\partial _{h}\psi _{0}}\rangle } +\partial _{h}\mathcal {A}^{2}_{ls}(t){\langle {\partial _{h} \psi _{0}|\psi _{2}}\rangle }\right) \nonumber \\{} & {} +\varepsilon ^{2}|\mathcal {A}_{ls}(t)|^{2} {\langle {\partial _{h}\psi _{1}|\partial _{h}\psi _{1}}\rangle }, \end{aligned}$$
(B5)

with

$$\begin{aligned} {\langle {\partial _{h}\psi _{0}|\partial _{h}\psi _{0}}\rangle }= & {} \frac{\left( \Upsilon - 1\right) ^{2}}{32 (h-1)^{2}\left( h-\Upsilon \right) ^{2}},\nonumber \\ {\langle {\partial _{h}\psi _{0}|\psi _{2}}\rangle }= & {} {\langle {\psi _{2}|\partial _{h} \psi _{0}}\rangle }=-\frac{1}{\sqrt{2}}\frac{\sinh \theta _{ls}}{\omega _{ls}},\nonumber \\ {\langle {\partial _{h}\psi _{1}|\partial _{h}\psi _{1}}\rangle }= & {} \frac{3}{2}\frac{\sinh ^{2} \theta _{ls}}{\omega _{ls}^{2}}, \end{aligned}$$
(B6)

where \(\omega _{ls}\) and \( \theta _{ls}\) are given in sections 4 and 5, respectively. In the \(\varepsilon \rightarrow 0\) limit, it reproduces the result obtained for \(g_{hh}\) in [86]. Using similar mathematical steps as above, we can also compute other metric components which are \(g_{h\Upsilon }\), and \(g_{\Upsilon \Upsilon }\).

Appendix C

In this section, for the sake of completeness, we evaluate the metric components of the perturbed ground state. The Hamiltonian of the ground state takes the form:

$$\begin{aligned} \hat{H}_{g}\simeq -j\sqrt{1+\Omega _{x}^{2}}+\left( \frac{\sqrt{1+\Omega _{x}^{2}} +2\xi _{y}}{2}\right) \hat{P}^{2}+ \frac{\sqrt{1+\Omega _{x}^{2}}}{2}\hat{Q}^{2}, \end{aligned}$$
(C1)

which describes the harmonic oscillator with frequency \(\omega _{g}=(1+\Omega _{x}^{2})^{1/4}\sqrt{\Gamma _{+}}\) and \(\Gamma _{+}=\sqrt{1+\Omega _{x}^{2}}+2\xi _{y}\). The Bogoliubov transformation of the ground state is

$$\begin{aligned} \hat{Q}= & {} \left( \frac{\Gamma _{+}}{4\sqrt{1+\Omega _{x}^{2}}}\right) ^{1/4} \left( \gamma _{g}^{\dagger }+\gamma _{g}\right) ,\nonumber \\ \hat{P}= & {} i\left( \frac{\sqrt{1+\Omega _{x}^{2}}}{4\Gamma _{+}}\right) ^{1/4} \left( \gamma _{g}^{\dagger }-\gamma _{g}\right) , \end{aligned}$$
(C2)

with \(\gamma _{g}{|{0}\rangle }_{g}=0\) and \({|{0}\rangle }_{g}\) is the Bogoliubov ground state. Following a similar analysis as for the excited state, we perturb the ground state as

$$\begin{aligned} {|{\Psi (t)}\rangle }_{g}=e^{i\hat{H}_{g}t}e^{i\varepsilon \hat{Q}}e^{-i\hat{H}_{g}t}{|{0}\rangle }_{g}\equiv e^{i\varepsilon \hat{Q}_{g}(t)}{|{0}\rangle }_{g}, \end{aligned}$$
(C3)

with

$$\begin{aligned} \hat{Q}_{g}=\hat{Q}\cos \omega _{g}t+\hat{P}\, \frac{\Gamma _{+}^{1/2}\sin \omega _{g}t}{(1+\Omega _{x}^{2})^{1/4}}, \end{aligned}$$
(C4)

and the metric components up to \(\mathcal{O}(\varepsilon )\) turn out to be

$$\begin{aligned} g_{\Omega _{x}\Omega _{x}}= & {} {\frac{j}{2(1+\Omega _{x}^{2})^{7/4} \Gamma _{+}^{1/2}} + \frac{\xi _{y}^{2}\Omega _{x}^{2}}{8(1+\Omega _{x}^{2})^{2}\Gamma _{+}^{2}}} + \nonumber \\{} & {} \varepsilon \frac{\sqrt{j}\,\Omega _{x}t\left( 2\xi _{y}^{2}+3\xi _{y} \sqrt{1+\Omega _{x}^{2}}+1+\Omega _{x}^{2}\right) \cos \omega _{g}t}{(1+\Omega _{x}^{2})^{7/4}\Gamma _{+}^{3/2}}\nonumber \\{} & {} -\varepsilon \frac{\sqrt{j}\,\Omega _{x}\xi _{y}\sin \omega _{g}t}{(1+\Omega _{x}^{2})^{2}\Gamma _{+}},\nonumber \\ g_{\Omega _{x}\xi _{y}}= & {} {-\frac{\xi _{y}\Omega _{x}}{8(1+\Omega _{x}^{2})\Gamma _{+}^{2}}}+\varepsilon \frac{\sqrt{j}\,t\cos \omega _{g}t}{2(1+\Omega _{x}^{2}) ^{3/4}\Gamma _{+}^{1/2}}+\nonumber \\{} & {} \varepsilon \frac{\sqrt{j}\,\sin \omega _{g}t}{2(1+\Omega _{x}^{2})\Gamma _{+}},\nonumber \\ g_{\xi _{y}\xi _{y}}= & {} {\frac{1}{8\Gamma _{+}^{2}}},\quad g_{\Omega _{x}t}=\varepsilon \frac{\sqrt{j}\,\Gamma _{+}^{1/2}\cos \omega _{g}t}{2(1+\Omega _{x}^{2})^{3/4}},\nonumber \\ g_{\xi _{y}t}= & {} g_{tt}=0. \end{aligned}$$
(C5)

We have computed the Ricci scalar in the parameter space \((\Omega _{x},\xi _{y})\) for fixed t and find that \(R\rightarrow -4\) as \(\xi _y \rightarrow -\xi _{yc}\) similar to the situation in the symmetric phase.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, N., Gautam, M., Gill, A. et al. Fotoc complexity in the Lipkin–Meshkov–Glick model and its variant. Eur. Phys. J. B 97, 5 (2024). https://doi.org/10.1140/epjb/s10051-023-00646-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-023-00646-4

Navigation