Skip to main content
Log in

Fidelity-mediated analysis of the transverse-field XY chain with the long-range interactions: anisotropy-driven multi-criticality

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The transverse-field XY chain with the long-range interactions was investigated by means of the exact-diagonalization method. The algebraic decay rate \(\sigma \) of the long-range interaction is related to the effective dimensionality \(D(\sigma )\), which governs the criticality of the transverse-field-driven phase transition at \(H=H_c\). According to the large-N analysis, the phase boundary \(H_c(\eta )\) exhibits a reentrant behavior within \(2<D < 3.065\ldots \), as the XY-anisotropy \(\eta \) changes. On the one hand, as for the \(D=(2+1)\) and \((1+1)\) short-range XY magnets, the singularities have been determined as \(H_c(\eta ) -H_c(0) \sim |\eta |\) and 0, respectively, and the transient behavior around \(D \approx 2.5\) remains unclear. As a preliminary survey, setting \((\sigma ,\eta )=(1 ,0.5)\), we investigate the phase transition by the agency of the fidelity, which seems to detect the singularity at \(H=H_c\) rather sensitively. Thereby, under the setting \( \sigma =4/3\) (\(D=2.5\)), we cast the fidelity data into the crossover-scaling formula with the properly scaled \(\eta \), aiming to determine the multi-criticality around \(\eta =0\). Our result indicates that the multi-criticality is identical to that of the \(D=(2+1)\) magnet, and \(H_c(\eta )\)’s linearity might be retained down to \(D>2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a theoretical study, and did not need any data.]

References

  1. J. Maziero, H.C. Guzman, L.C. Céleri, M.S. Sarandy, R.M. Serra, Phys. Rev. A 82, 012106 (2010)

    Article  ADS  Google Scholar 

  2. Z.-Y. Sun, Y.-Y. Wu, J. Xu, H.-L. Huang, B.-F. Zhan, B. Wang, C.-B. Duanpra, Phys. Rev. A 89, 022101 (2014)

    Article  ADS  Google Scholar 

  3. G. Karpat, B. Çakmak, F.F. Fanchini, Phys. Rev. B 90, 104431 (2014)

    Article  ADS  Google Scholar 

  4. Q. Luo, J. Zhao, X. Wang, Phys. Rev. E 98, 022106 (2018)

    Article  ADS  Google Scholar 

  5. A. Steane, Rep. Prog. Phys. 61, 117 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  6. C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  7. P. Adelhardt, J.A. Koziol, A. Schellenberger, K.P. Schmidt, Phys. Rev. B 102, 174424 (2020)

    Article  ADS  Google Scholar 

  8. N. Defenu, A. Trombettoni, S. Ruffo, Phys. Rev. B 96, 104432 (2017)

    Article  ADS  Google Scholar 

  9. A. Dutta, J.K. Bhattacharjee, Phys. Rev. B 64, 184106 (2001)

    Article  ADS  Google Scholar 

  10. T. Koffel, M. Lewenstein, L. Tagliacozzo, Phys. Rev. Lett. 109, 267203 (2012)

    Article  ADS  Google Scholar 

  11. L.S. Campana, L. De Cesare, U. Esposito, M.T. Mercaldo, I. Rabuffo, Phys. Rev. B 82, 024409 (2010)

    Article  ADS  Google Scholar 

  12. Z.-X. Gong, M.F. Maghrebi, A. Hu, M. Foss-Feig, P. Richerme, C. Monroe, A.V. Gorshkov, Phys. Rev. B 93, 205115 (2016)

    Article  ADS  Google Scholar 

  13. S. Fey, K.P. Schmidt, Phys. Rev. B 94, 075156 (2016)

    Article  ADS  Google Scholar 

  14. M.F. Maghrebi, Z.-X. Gong, A.V. Gorshkov, Phys. Rev. Lett. 119, 023001 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  15. I. Frérot, P. Naldest, T. Roscilde, Phys. Rev. B 95, 245111 (2017)

    Article  ADS  Google Scholar 

  16. S.S. Roy, H.S. Dhar, Phys. Rev. A 99, 062318 (2019)

    Article  ADS  Google Scholar 

  17. R. Puebla, O. Marty, M.B. Plenio, Phys. Rev. A 100, 032115 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  18. M.E. Fisher, S.-K. Ma, B.G. Nickel, Phys. Rev. Lett. 29, 917 (1972)

    Article  ADS  Google Scholar 

  19. J. Sak, Phys. Rev. B 8, 281 (1973)

    Article  ADS  Google Scholar 

  20. G. Gori, M. Michelangeli, N. Defenu, A. Trombettoni, Phys. Rev. E 96, 012108 (2017)

    Article  ADS  Google Scholar 

  21. M.C. Angelini, G. Parisi, F. Ricchi-Tersenghi, Phys. Rev. E 89, 062120 (2014)

    Article  ADS  Google Scholar 

  22. J.S. Joyce, Phys. Rev. 146, 349 (1966)

    Article  ADS  Google Scholar 

  23. S. Wald, M. Henkel, J. Stat. Mech. Theory Exp. P07006 (2015)

  24. M. Henkel, J. Phys. A Math. Theor. 17, L795 (1984)

    ADS  Google Scholar 

  25. S. Jalal, R. Khare, S. Lal, arXiv:1610.09845

  26. Y. Nishiyama, Eur. Phys. J. B 92, 167 (2019)

    Article  ADS  Google Scholar 

  27. V. Mukherjee, A. Polkovnikov, A. Dutta, Phys. Rev. B 83, 075118 (2011)

    Article  ADS  Google Scholar 

  28. I. Homrighausen, N.O. Abeling, V. Zauner-Stauber, J.C. Halimeh, Phys. Rev. B 96, 104436 (2017)

    Article  ADS  Google Scholar 

  29. L. Vanderstraeten, M. Van Damme, H.P. Büchler, F. Verstraete, Phys. Rev. Lett. 121, 090603 (2018)

    Article  ADS  Google Scholar 

  30. R. Goll, P. Kopietz, Phys. Rev. E 98, 022135 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  31. E. Luijten, H.W.J. Blöte, Phys. Rev. Lett. 89, 025703 (2002)

    Article  ADS  Google Scholar 

  32. E. Brezin, G. Parisi, F. Ricci-Tersenghi, J. Stat. Phys. 157, 855 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  33. N. Defenu, A. Trombettoni, A. Codello, Phys. Rev. E 92, 052113 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  34. Z. Zhu, G. Sun, W.-L. You, D.-N. Shi, Phys. Rev. A 98, 023607 (2018)

    Article  ADS  Google Scholar 

  35. E.K. Riedel, F. Wegner, Z. Phys. 225, 195 (1969)

    Article  ADS  Google Scholar 

  36. P. Pfeuty, D. Jasnow, M.E. Fisher, Phys. Rev. B 10, 2088 (1974)

    Article  ADS  Google Scholar 

  37. H.T. Quan, Z. Song, X.F. Liu, P. Zanardi, C.P. Sun, Phys. Rev. Lett. 96, 140604 (2006)

    Article  ADS  Google Scholar 

  38. P. Zanardi, N. Paunković, Phys. Rev. E 74, 031123 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  39. H.-Q. Zhou, J.P. Barjaktarevi\(\tilde{{\rm c}}\), J. Phys. A Math. Theor. 41, 412001 (2008)

  40. W.-C. Yu, H.-M. Kwok, J. Cao, S.-J. Gu, Phys. Rev. E 80, 021108 (2009)

    Article  ADS  Google Scholar 

  41. W.-L. You, Y.-L. Dong, Phys. Rev. B 84, 174426 (2011)

    Article  ADS  Google Scholar 

  42. A. Uhlmann, Rep. Math. Phys. 9, 273 (1976)

    Article  ADS  Google Scholar 

  43. R. Jozsa, J. Mod. Opt. 41, 2315 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  44. A. Peres, Phys. Rev. A 30, 1610 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  45. T. Gorin, T. Prosen, T.H. Seligman, M. Žnidarič, Phys. Rep. 435, 33 (2006)

    Article  ADS  Google Scholar 

  46. L. Wang, Y.-H. Liu, J. Imriška, P.N. Ma, M. Troyer, Phys. Rev. X 5, 031007 (2015)

    Google Scholar 

  47. A.F. Albuquerque, F. Alet, C. Sire, S. Capponi, Phys. Rev. B 81, 064418 (2010)

    Article  ADS  Google Scholar 

  48. D.J. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena (World Scientific, Singapore, 2005)

    Book  MATH  Google Scholar 

  49. Y. Deng, H.W.J. Blöte, Phys. Rev. E 68, 036125 (2003)

    Article  ADS  Google Scholar 

  50. V. Zapf, M. Jaime, C.D. Batista, Rev. Mod. Phys. 86, 563 (2014)

    Article  ADS  Google Scholar 

  51. C. Itoi, S. Qin, I. Affleck, Phys. Rev. B 61, 6747 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (Grant No. 20K03767).

Author information

Authors and Affiliations

Authors

Contributions

The presented idea was conceived by YN. He also performed the computer simulations, analyzed the data, and wrote the manuscript.

Corresponding author

Correspondence to Yoshihiro Nishiyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiyama, Y. Fidelity-mediated analysis of the transverse-field XY chain with the long-range interactions: anisotropy-driven multi-criticality. Eur. Phys. J. B 94, 226 (2021). https://doi.org/10.1140/epjb/s10051-021-00245-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00245-1

Navigation