Skip to main content
Log in

Motion analysis of light-powered autonomous silver chloride nanomotors

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Powered by UV light, nano/micrometer-sized silver chloride particles exhibit autonomous movement and form “schools” in aqueous solution, i.e. regions in which the number density of particles is significantly higher than the global average. In this paper, the silver chloride particles in such a system are classified by their proximity to other AgCl particles —be they isolated, coupled or schooled— and their motion paths are tracked and analyzed. By plotting time-averaged mean squared displacements of each particle over various time intervals from 0.1s to 15.0s, we discover different diffusive behaviors for the three classes of silver chloride particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Mirkovic, N.S. Zacharia, G.D. Scholes, G.A. Ozin, Small 6, 159 (2010).

    Article  Google Scholar 

  2. T. Mirkovic, N.S. Zacharia, G.D. Scholes, G.A. Ozin, ACS Nano 4, 1782 (2010).

    Article  Google Scholar 

  3. Y. Hong, D. Velegol, N. Chaturvedi, A. Sen, Phys. Chem. Chem. Phys. 12, 1423 (2010).

    Article  Google Scholar 

  4. S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010).

    Article  ADS  Google Scholar 

  5. J. Wang, ACS Nano 3, 4 (2009).

    Article  Google Scholar 

  6. S. Sánchez, M. Pumera, Chem. Asian J. 4, 1402 (2009).

    Article  Google Scholar 

  7. W.F. Paxton, S. Sundararajan, T.E. Mallouk, A. Sen, Angew. Chem., Int. Ed. 45, 5420 (2006).

    Article  Google Scholar 

  8. W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K. St. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004).

    Article  Google Scholar 

  9. D. Kagan, P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh, G.-U. Flechsig, J. Wang, J. Am. Chem. Soc. 131, 12082 (2009).

    Article  Google Scholar 

  10. D. Kagan, R. Laocharoensuk, M. Zimmerman, C. Clawson, S. Balasubramanian, D. Kang, D. Bishop, S. Sattayasamitsathit, L. Zhang, J. Wang, Small 6, 2741 (2010).

    Article  Google Scholar 

  11. S. Sattayasamitsathit, W. Gao, P. Calvo-Marzal, K.M. Manesh, J. Wang, Chem. Phys. Chem. 11, 2802 (2010).

    Article  Google Scholar 

  12. W.F. Paxton, P.T. Baker, T.R. Kline, Y. Wang, T.E. Mallouk, A. Sen, J. Am. Chem. Soc. 128, 14881 (2006).

    Article  Google Scholar 

  13. Y. Wang, S.-t. Fei, Y.-M. Byun, P.E. Lammert, V.H. Crespi, A. Sen, T.E. Mallouk, J. Am. Chem. Soc. 131, 9926 (2009).

    Article  Google Scholar 

  14. A.A. Solovev, Y. Mei, E. Bermúdez Ureña, G. Huang, O.G. Schmidt, Small 5, 1688 (2009).

    Article  Google Scholar 

  15. A.A. Solovev, S. Sanchez, Y. Mei, O.G. Schmidt, Phys. Chem. Chem. Phys. 13, 10131 (2011).

    Article  Google Scholar 

  16. L.F. Valadares, Y.-G. Tao, N.S. Zacharia, V. Kitaev, F. Galembeck, R. Kapral, G.A. Ozin, Small 6, 565 (2010).

    Article  Google Scholar 

  17. N. Mano, A. Heller, J. Am. Chem. Soc. 127, 11574 (2005).

    Article  Google Scholar 

  18. Y. Mei, A.A. Solovev, S. Sanchez, O.G. Schmidt, Chem. Soc. Rev. 40, 2109 (2011).

    Article  Google Scholar 

  19. W. Gao, S. Sattayasamitsathit, J. Orozco, J. Wang, J. Am. Chem. Soc. 133, 11862 (2011).

    Article  Google Scholar 

  20. K.M. Manesh, M. Cardona, R. Yuan, M. Clark, D. Kagan, S. Balasubramanian, J. Wang, ACS Nano 4, 1799 (2010).

    Article  Google Scholar 

  21. M. Ibele, T.E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 48, 3308 (2009).

    Article  Google Scholar 

  22. Y. Hong, M. Diaz, U.M. Córdova-Figueroa, A. Sen, Adv. Funct. Mater. 20, 1568 (2010).

    Article  Google Scholar 

  23. S.T. Chang, V.N. Paunov, D.N. Petsev, O.D. Velev, Nat. Mater. 6, 235 (2007).

    Article  ADS  Google Scholar 

  24. P. Calvo-Marzal, S. Sattayasamitsathit, S. Balasubramanian, J.R. Windmiller, C. Dao, J. Wang, Chem. Commun. 46, 1623 (2010).

    Article  Google Scholar 

  25. G. Loget, A. Kuhn, J. Am. Chem. Soc. 132, 15918 (2010).

    Article  Google Scholar 

  26. W. Gao, K.M. Manesh, J. Hua, S. Sattayasamitsathit, J. Wang, Small 7, 2047 (2011).

    Article  Google Scholar 

  27. A. Ghosh, P. Fischer, Nano Lett. 9, 2243 (2009).

    Article  ADS  Google Scholar 

  28. O.S. Pak, W. Gao, J. Wang, E. Lauga, Soft Matter 7, 8169 (2011).

    Article  ADS  Google Scholar 

  29. P. Dhar, T.M. Fischer, Y. Wang, T.E. Mallouk, W.F. Paxton, A. Sen, Nano Lett. 6, 66 (2005).

    Article  ADS  Google Scholar 

  30. J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).

    Article  ADS  Google Scholar 

  31. H. Ke, S. Ye, R.L. Carroll, K. Showalter, J. Phys. Chem. A 114, 5462 (2010).

    Article  Google Scholar 

  32. S. Ebbens, R.A.L. Jones, A.J. Ryan, R. Golestanian, J.R. Howse, Phys. Rev. E 82, 015304 (2010).

    Article  ADS  Google Scholar 

  33. G. Mino, T.E. Mallouk, T. Darnige, M. Hoyos, J. Dauchet, J. Dunstan, R. Soto, Y. Wang, A. Rousselet, E. Clement, Phys. Rev. Lett. 106, 048102 (2011).

    Article  ADS  Google Scholar 

  34. R. Golestanian, Phys. Rev. Lett. 102, 188305 (2009).

    Article  ADS  Google Scholar 

  35. S.J. Ebbens, J.R. Howse, Langmuir 27, 12293 (2011).

    Article  Google Scholar 

  36. J.L. Anderson, Ann. N. Y. Acad. Sci. 469, 166 (1986).

    Article  ADS  Google Scholar 

  37. A. Sen, M. Ibele, Y. Hong, D. Velegol, Faraday Discuss. 143, 15 (2009).

    Article  ADS  Google Scholar 

  38. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. A. Einstein, Ann. Phys. (Leipzig) 17, (1905).

  40. M. de Jager, F.J. Weissing, P.M.J. Herman, B.A. Nolet, J. van de Koppel, Science 332, 1551 (2011).

    Article  ADS  Google Scholar 

  41. F. Matthaus, M. Jagodic, J. Dobnikar, Biophys. J. 97, 946 (2009).

    Article  ADS  Google Scholar 

  42. T. Ott, M. Bonitz, Z. Donko, P. Hartmann, Phys. Rev. E 78, (2008).

  43. E. Baskin, A. Iomin, Phys. Rev. Lett. 93, (2004).

  44. A.V. Chechkin, V.Y. Gonchar, M. Szydlowski, Phys. Plasmas 9, 78 (2002).

    Article  ADS  Google Scholar 

  45. T. Neusius, I.M. Sokolov, J.C. Smith, Phys. Rev. E 80, 011109 (2009).

    Article  ADS  Google Scholar 

  46. J.M. Haugh, Biophys. J. 97, 435 (2009).

    Article  ADS  Google Scholar 

  47. T. Kosztolowicz, J. Membr. Sci. 320, 492 (2008).

    Article  Google Scholar 

  48. M.J. Saxton, Biophys. J. 92, 1178 (2007).

    Article  ADS  Google Scholar 

  49. M.J. Saxton, Biophys. J. 81, 2226 (2001).

    Article  ADS  Google Scholar 

  50. P.N. Pusey, Science 332, 802 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, W., Ibele, M., Liu, R. et al. Motion analysis of light-powered autonomous silver chloride nanomotors. Eur. Phys. J. E 35, 77 (2012). https://doi.org/10.1140/epje/i2012-12077-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12077-x

Keywords

Navigation