Skip to main content
Log in

Synthesis of Selenium Sulfide Nanoparticles in Polysaccharide Arabinogalactan and Starch Matrices

  • POLYMERIC, BIOORGANIC, AND HYBRID NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

New water-soluble SeS2 containing nanocomposites are obtained via ion-exchange interaction between selenous acid and ammonium sulfide in water using natural arabinogalactan and starch polysaccharides as nanoparticle stabilizers. The transmission electron microscopy, X-ray diffraction analysis, and dynamic light scattering data show that nanocomposites are formed as spherical crystalline SeS2 nanoparticles 5–140 nm in size, dispersed in polysaccharide matrices. The type of stabilization matrix and ratio of reactants have a decisive influence on the nanomorphological properties of the materials obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. D. Mauricio, S. Guerra-Ojeda, P. Marchio, et al., Oxid. Med. Cell. Longev. 2018, 1 (2018). https://doi.org/10.1155/2018/6231482

    Article  CAS  Google Scholar 

  2. Z. Salman, U. Irshad, K. Ali, et al., Nanoscale Rep. 2, 32 (2019). https://doi.org/10.26524/nr1924

    Article  Google Scholar 

  3. L. A. Kolahalam, I. V. K. Viswanat, B. S. Diwakar, et al., Mater. Today: Proc. 18, 2182 (2019). https://doi.org/10.1016/j.matpr.2019.07.371

    Article  Google Scholar 

  4. A. Taloni, M. Vodret, G. Costantini, and S. Zapperi, Nat. Rev. Mater. 3, 211 (2018). https://doi.org/10.1038/s41578-018-0029-4

    Article  Google Scholar 

  5. J. L. Rodriguez-Lopez, J. M. Montejano-Carrizales, J. P. Palomares-Baez, et al., Key Eng. Mater. 444, 47 (2010). https://doi.org/10.4028/www.scientific.net/KEM.444.47

    Article  CAS  Google Scholar 

  6. A. P. Ramos, M. A. E. Cruz, C. B. Tovani, and P. Ciancaglini, Biophys. Rev. 9, 79 (2017). https://dx.doi.org/10.1007%2Fs12551-016-0246-2

    Article  CAS  Google Scholar 

  7. S. Glebska, A. Szczecinska, N. Znajdek, et al., Acta Innov. 30, 5 (2019). http://dx.doi.org/10.32933%2FActaInnovations.30.1

    Article  Google Scholar 

  8. L. M. Sosedova, V. S. Rukavishnikov, B. G. Sukhov, G. B. Borovskii, E. A. Titov, M. A. Novikov, V. A. Vokina, N. L. Yakimova, M. V. Lesnichaya, T. V. Kon’kova, M. K. Borovskaya, I. A. Graskova, A. I. Perfil’eva, and B. A. Trofimov, Nanotechnol. Russ. 13, 290 (2018).

    Article  CAS  Google Scholar 

  9. M. Suleiman, A. A. Ali, A. Hussein, et al., J. Mater. Environ. Sci. 5, 1029 (2013).

    Google Scholar 

  10. S. Boroum, M. Safari, E. Shaabani, et al., Mater. Res. Express 6, 211 (2019). https://doi.org/10.1088/2053-1591/ab2558

    Article  CAS  Google Scholar 

  11. M. Vahdati and T. T. Moghadam, Sci. Rep. 10, 510 (2020). https://doi.org/10.1038/s41598-019-57333-7

    Article  CAS  Google Scholar 

  12. B. Hosnedlova, M. Kepinska, S. Skalickova, et al., Int. J. Nanomed. 13, 2107 (2018). https://dx.doi.org/10.2147%2FIJN.S157541

  13. S. M. Amini and V. P. Mahabadi, Nanomed. Res. J. 3, 117 (2018). https://doi.org/10.22034/nmrj.2018.03.001

    Article  CAS  Google Scholar 

  14. G. B. Sergeev, Ros. Khim. Zh. 46, 22 (2002).

    CAS  Google Scholar 

  15. R. M. Tripathia, P. R. Rao, and T. Tsuzuki, RSC Adv. 8, 36345 (2018). https://doi.org/10.1039/C8RA07845A

  16. S. Risse, E. Hark, B. Kent, and M. Ballauff, ACS Nano 13, 10233 (2019). https://doi.org/10.1021/acsnano.9b03453

    Article  CAS  Google Scholar 

  17. H. Chen, C. Wang, W. Dong, et al., Nano Lett. 15, 798 (2015). https://doi.org/10.1021/nl504963e

    Article  CAS  Google Scholar 

  18. R. Mo, Z. Lei, D. Rooney, and K. Sun, Energy Storage Mater. 23, 284 (2019). https://doi.org/10.1016/j.ensm.2019.04.046

    Article  Google Scholar 

  19. P. R. Cohen and C. A. Anderson, Dermatol. Ther. (2018). https://doi.org/10.1007/s13555-018-0259-9

  20. F. Mavadnejad, F. Rafii, E. Faghfuri, et al., Am. Res. J. Dermatol. 1, 22 (2013).

    Google Scholar 

  21. Z. Li, J. Zhang, Y. Lu, and W. X. Lou, Sci. Adv. 4, 1 (2018). https://doi.org/10.1126/sciadv.aat1687

    Article  CAS  Google Scholar 

  22. J. He, W. Lv, and Y. Chen, J. Mater. Chem. A 22, 1 (2018). https://doi.org/10.1039/c8ta02434k

    Article  CAS  Google Scholar 

  23. F. Asghari-Paskiabi, M. Imani, H. Rafii-Tabar, and M. Razzaghi-Abyaneh, Biochem. Biophys. Res. Commun. 516, 1078 (2019). https://doi.org/10.1016/j.bbrc.2019.07.007

    Article  CAS  Google Scholar 

  24. K. R. Raksha, S. Ananda, and R. Narayanaswamy, J. Sulfur Chem. 12, 471 (2015). https://doi.org/10.1080/17415993.2015.1057511

    Article  CAS  Google Scholar 

  25. I. A. Kariper, S. Ozden, and F. M. Tezel, Opt. Quantum Electron. 50, 441 (2018). https://doi.org/10.1007/s11082-018-1693-8

    Article  CAS  Google Scholar 

  26. T. V. Fadeeva, I. A. Shurygina, B. G. Sukhov, M. K. Rai, M. G. Shurygin, V. A. Umanets, M. V. Lesnichaya, T. V. Kon’kova, and D. M. Shurygin, Bull. Russ. Acad. Sci.: Phys. 79, 273 (2015).

    Article  CAS  Google Scholar 

  27. G. P. Aleksandrova, A. S. Boymirzaev, M. V. Lesnichaya, B. G. Sukhov, and B. A. Trofimov, Russ. J. Gen. Chem. 85, 488 (2015).

    Article  CAS  Google Scholar 

  28. G. P. Aleksandrova, L. A. Grishchenko, A. S. Bogomyakov, B. G. Sukhov, V. I. Ovcharenko, and B. A. Trofimov, Russ. Chem. Bull. 59, 2318 (2010).

    Article  CAS  Google Scholar 

  29. L. P. Feoktistova, G. P. Aleksrova, L. A. Grishchenko, et al., Nanotekhnika 20, 31 (2009).

    Google Scholar 

  30. M. V. Lesnichaya, S. F. Malysheva, N. A. Belogorlova, I. A. Graskova, A. V. Gazizova, A. I. Perfilyeva, O. A. Nozhkina, and B. G. Sukhov, Russ. Chem. Bull. 68, 2245 (2019).

    Article  CAS  Google Scholar 

  31. K. Wongmanee, S. Khuanamkam, and S. Chairam, J. King Saud Univ. Sci. 29, 547 (2017). https://doi.org/10.1016/j.jksus.2017.08.007

    Article  Google Scholar 

  32. E. N. Medvedeva, V. A. Babkin, and L. A. Ostroukhova, Khim. Rastit. Syr’ya, No. 1, 27 (2003).

    Google Scholar 

  33. G. F. Antonova and N. A. Tyukavkina, Khim. Drevesin., No. 2, 89 (1983).

  34. P. Dokic, L. Dokic, T. Dapcevic, and V. Krstonosic, Prog. Colloid Polym. Sci. 135, 48 (2008).

    CAS  Google Scholar 

  35. A. Yu. Olenin and G. V. Lisichkin, Russ. Chem. Rev. 80, 605 (2011).

    Article  CAS  Google Scholar 

  36. B. N. Khlebtsov and N. G. Khlebtsov, Colloid. J. 73, 118 (2011).

    Article  CAS  Google Scholar 

  37. R. Sadeghi, Z. Daniella, S. Uzun, and J. Kokini, J. Cereal Sci. 76, 127 (2017).

    Article  Google Scholar 

  38. E. R. Gasilova, A. A. Toropova, S. V. Bushin, et al., J. Phys. Chem. B 114, 4204 (2010).

    Article  CAS  Google Scholar 

  39. R. Pecora, Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy (Plenum, New York, 1985).

    Book  Google Scholar 

  40. A. Romdhane, M. Aurousseau, A. Guillet, and E. Mauret, Starch 67, 319 (2015).

    Article  CAS  Google Scholar 

  41. P. L. Russell and G. Oliver, J. Cereal Sci. 10, 123 (1989). https://doi.org/10.1016/S0733-5210(89)80041-4

    Article  CAS  Google Scholar 

  42. E. Hosseini, H. R. Mozafari, M. Hojjatoleslamy, and E. Rousta, Food Sci. Technol. 37, 1 (2017). https://doi.org/10.1590/1678-457x.18116

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment of the Collective Usage Center of the Limnological Institute (Siberian Branch, Russian Academy of Sciences) and of the Baikal Analytical Center for Collective Use of the Favorsky Irkutsk Institute of Chemistry (Siberian Branch, Russian Academy of Sciences) was used in this work.

Funding

The study was supported by the Russian Foundation for Basic Research (project no 18-316-20017 mol_a_ved: “Synthesis of SeS2-Containing Nanocomposites and Study of Their Structure”) and the state task of the Favorsky Irkutsk Institute of Chemistry SB RAS (project АААА-А16-116112510011-8: “Study of the Dynamics of Synthesis of Nanocomposites”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lesnichaya.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesnichaya, M.V., Sukhov, B.G. Synthesis of Selenium Sulfide Nanoparticles in Polysaccharide Arabinogalactan and Starch Matrices. Nanotechnol Russia 16, 202–210 (2021). https://doi.org/10.1134/S2635167621020099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167621020099

Navigation