Skip to main content
Log in

Influence of Titanium Substrate Temperature on Phase Structure of a Plasma Hydroxyapatite Coating

  • MATERIALS FOR HUMAN LIFE SUPPORT AND ENVIRONMENTAL PROTECTION
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Plasma coatings of hydroxyapatite (HA) were formed on Ti substrates in modes to obtain high mechanical properties, structural stability, and phase composition. Preheating the titanium substrate to 550°C increases the content of the equilibrium HA phase in the coating to 92%. By the DSC method, there is no local thermal effect of heat release at 723°C, as in the case of a coating sprayed onto an unheated substrate, and there is no halo in the X-ray diffraction pattern in the region of the main HA reflections. Hydrothermal treatment (HTT) of the HA coating at 650°C increases the HA content to 98%, regardless of the temperature of the preheating of the Ti substrate. Regardless of the state of the coatings, there is a gradual release of heat in DSC studies in the range of 450–1000°C, which increases after hydrothermal treatment. This phenomenon requires additional research. The crystallite size in the sprayed coatings of 42.1–43.1 nm increases to 64.4–68.3 nm after HTT is comparable to the crystallite size of 57.4 nm in the sprayed powder. After HTT of coating, the tricalcium phosphate phase is absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Berndt, C.C., Hasan, F., Tietz, U., and Schmitz, K.-P., A review of hydroxyapatite coatings manufactured by thermal spray, in Advances in Calcium Phosphate Biomaterials, Berlin–Heidelberg: Springer, 2014, pp. 267–329.

  2. Van Oirschot, B.A.J.A., Eman, R.M., Habibovic, P., Leeuwenburgh, S.C.G., Tahmasebi, Z., Weinans, H., Alblas, J., Meijer, G.J., Jansen, J.A., and van den Beucken, J.J.J.P., Osteophilic properties of bone implant surface modifications in a cassette model on a decorticated goat spinal transverse process, Acta Biomater., 2016, vol. 37, pp. 195–205.

    Article  CAS  PubMed  Google Scholar 

  3. Heimann, R.B., Plasma-sprayed bioactive ceramic coatings with hig plasma-sprayed bioactive ceramic coatings with high resorption resistance based on transition metal-substituted calcium hexaorthophosphates, Materials, 2019, vol. 12, art. ID 2059. https://doi.org/10.3390/ma12132059

  4. Dorozhkin, S.V., Calcium orthophosphate deposits: Preparation, properties and biomedical applications. Review, Mater. Sci. Eng., C, 2015, vol. 55, pp. 272–326.

    Article  CAS  Google Scholar 

  5. Tonino, A.J., Thèrin, M., and Doyle, C., Hydroxyapatite-coated femoral stems. Histology and histomorphometry around five components retrieved at post mortem, J. Bone Jt. Surg., 1999, vol. 81, no. 1, pp. 148–154.https://doi.org/10.1302/0301-620x.81b1.8948

    Article  CAS  Google Scholar 

  6. Sung, Y.-M., Shin, Y.-K., Song, Y.-W., Mamaev, A.I., and Mamaeva, V.A., Nanocrystal formation in hydroxyapatite films electrochemically coated on Ti–6Al–4V alloys, Cryst. Growth Des., 2005, vol. 5, no. 1, pp. 29–32.

    Article  CAS  Google Scholar 

  7. Kalita, V.I., Komlev, D.I., Komlev, V.S., Fedotov, A.Yu., and Radyuk, A.A., Hydroxyapatite-based coatings for intraosteal implants, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 4, pp. 486–492.

    Article  Google Scholar 

  8. Lugscheider, E., Knepper, M., Heimberg, A., Dekker, A., and Kirkpatrick, C.J., Cytotoxicity investigations of plasma sprayed calcium phosphate coatings, J. Mater. Sci. Mater. Med., 1994, vol. 5, pp. 371–375.

    Article  CAS  Google Scholar 

  9. Park, J.-W., Tustusmi. Y., Lee, C.S., Park, C.H., Kim, Y.J., Jang, J.-H., Khang, D., Im, Y.-M., Doi, H., Nomura, N., and Hanawa, T., Surface structures and osteoblast response of hydrothermally produced Ca-TiO3 thin film on Ti–13Nb–13Zr alloy, Appl. Surf. Sci., 2011, vol. 257, pp. 7856–7863.

    Article  CAS  Google Scholar 

  10. Pham, D.Q., Berndt, C.C., Gbureck, U., Zreiqat, H., Truong, V.K., and Ang, A.S.M., Mechanical and chemical properties of Baghdadite coatings manufactured by atmospheric plasma spraying, Surf. Coat. Technol., 2019, vol. 378, pp. 1–15. https://doi.org/10.1016/j.surfcoat.2019.124945

    Article  CAS  Google Scholar 

  11. Kalita, V.I., Komlev, D.I., Komlev, V.S., and Radyuk, A.A., The shear strength of three-dimensional capillary-porous titanium coatings for intraosseous implants, Mater. Sci. Eng., C, 2016, vol. 60, pp. 255–259.

    Article  CAS  Google Scholar 

  12. Gross, K.A., Gross, V., and Berndt, C.C., Thermal analysis of amorphous phases in hydroxyapatite coatings, J. Am. Ceram. Soc., 1998, vol. 81, no. 1, pp. 106–112.

    Article  CAS  Google Scholar 

  13. Feng, C.F., Khor, K.A., Liu, E.J., and Cheang, P., Phase transformations in plasma sprayed hydroxyapatite coatings, Scripta Mater., 2000, vol. 42, pp. 103–109.

    Article  CAS  Google Scholar 

  14. Wang, Y., Khor, K.A., and Cheang, P., Thermal spraying of functionally graded calcium phosphate coatings for biomedical implants, J. Therm. Spray Technol., 1998, vol. 7, no. 1, pp. 50–57.

    Article  CAS  Google Scholar 

  15. Barinov, S.M., Ivannikov, A.Yu., Kalita, V.I., Komlev, D.I., Komlev, V.S., Radyuk, A.A., Smirnov, I.V., and Fedotov, A.Yu., Composite coatings based on low-temperature calcium phosphates for intraosseous implants, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 1, pp. 88–91.

    Article  Google Scholar 

  16. Yamada, M., Shiota, M., Yamashita, Y., and Kasugai, Sh., Histological and histomorphometrical comparative study of the degradation and osteoconductive characteristics of alpha- and beta-tricalcium phosphate in block grafts, J. Biomed. Mater. Res., Part B, 2007, vol. 82, pp. 139–148.

    Google Scholar 

  17. Sahu, M.R., Mallik, P.K., Patnaik, S.C., and Behera, A., Synthesis and microstructure CaTiO3 coating by sol-gel spin-coating process, Int. J. Res. Appl. Sci. Biotechnol., 2018, vol. 5, no. 1, pp. 6–9.

    Google Scholar 

  18. Kalita, V.I., Radyuk, A.A., Komlev, D.I., Ivannikov, A.Yu., Komlev, V.S., and Demin, K.Yu., The boundary between the hydroxyapatite coating and titanium substrate, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 3, pp. 444–451.

    Article  Google Scholar 

  19. Yadi, M., Esfahani, H., Sheikhi, M., and Mohammadi, M., CaTiO3/α-TCP coatings on CP-Ti prepared via electrospinning and pulsed laser treatment for in vitro bone tissue engineering, Surf. Coat. Technol., 2020, vol. 401, art. ID 126256.

  20. Dong, Z.L., Khor, K.A., Quek, C.H., White, T.J., and Cheang, P., TEM and STEM analysis on heat-treated and in vitro plasma-sprayed hydroxyapatite/Ti–6Al–4V composite coatings, Biomaterials, 2003, vol. 24, no. 1, pp. 97–105.

    Article  CAS  PubMed  Google Scholar 

  21. Tong, W., Yang, Z., Zhang, X., Yang, A., Feng, J., Cao, Y., and Chen, J., Studies on diffusion maximum in X-ray diffraction patterns of plasma-sprayed hydroxyapatite coatings, J. Biomed. Mater. Res., 1998, vol. 40, pp. 407–413.

    Article  CAS  PubMed  Google Scholar 

  22. Suvorova, E.I., Klechkovskaya, V.V., Bobrovsky, V.V., Khamchukov, Yu.D., and Klubovich, V.V., Nanostructure of plasma-sprayed hydroxyapatite coating, Crystallogr. Rep., 2003, vol. 48, no. 5, pp. 872–877.

    Article  CAS  Google Scholar 

  23. Suvorova, E.I. and Buffat, P.A., Electron diffraction from micro- and nanoparticles of hydroxyapatite, J Microsc., 1999, vol. 196, no. 1, pp. 46–58.

    Article  CAS  PubMed  Google Scholar 

  24. Eanes, E.D., Termine, J.D., and Nylen, M.U., An electron microscopic study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite, Calcif. Tissue Res., 1973, vol. 12, no. 1, pp. 143–158.

    Article  CAS  PubMed  Google Scholar 

  25. Haberko, K., Bucko, M.M., Brzezinska-Miecznik, J., Haberko, M., Mozgawa, W., Panz, T., Pyda, A., and Zarebski, J., Natural hydroxyapatite—its behaviour during heat treatment, J. Eur. Ceram. Soc., 2006, vol. 26, pp. 537–542.

    Article  CAS  Google Scholar 

  26. Noor, Z., Sumitro, S.B., Hidayat, M., Rahim, A.H., and Taufiq, A., Assessment of microarchitecture and crystal structure of hydroxyapatite in osteoporosis, Microarchit. Cryst. Struct., 2011, vol. 30, no. 1, pp. 29–35.

    Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation (project no. 20-19-00671).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. R. Chueva, N. V. Gamurar, V. I. Kalita, D. I. Komlev, A. A. Radyuk, V. F. Shamray or A. B. Mikhailova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chueva, T.R., Gamurar, N.V., Kalita, V.I. et al. Influence of Titanium Substrate Temperature on Phase Structure of a Plasma Hydroxyapatite Coating. Inorg. Mater. Appl. Res. 13, 386–392 (2022). https://doi.org/10.1134/S2075113322020113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113322020113

Keywords:

Navigation