Skip to main content
Log in

State-of-the-Art Optical Resonator Gyroscopes

  • Published:
Gyroscopy and Navigation Aims and scope Submit manuscript

Abstract

The paper discusses the modern state of optical resonator gyroscopes. The basic concept of this type of gyros is described. The main approaches to their design and the method for angular rate measurement are considered, with the main focus made on the pioneer and most popular approach based on the use of phase modulation spectroscopy and a tuned laser. An alternative approach based on low-coherent sources of light is also analyzed. The main sources of measurement errors and the methods to overcome them are considered. The best value of random drift has been so far achieved using fiber ring resonators: 2.0 deg/h with the ring diameter 60 mm and the integration time 1 s, and 1.23 deg/h in 5 s; with the diameter 120 mm, 0.37 deg/h has been achieved with the integration time 1 s and 0.06 deg/h with 370 s. The reasons that currently hinder the commercial development of optical resonator gyros are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Malykin, G.B., The Sagnac effect: correct and incorrect explanations, Physics-Uspekhi, 2000, vol. 43, no. 12, p. 1229. https://doi.org/10.1070/PU2000v043n12ABEH000830

    Article  MathSciNet  Google Scholar 

  2. Sagnac, G., L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometre en rotation uniforme, Comptes Rendus, 1913, vol. 157, pp. 708–710.

    Google Scholar 

  3. Ezekiel, S., Balsamo, S.R., Passive ring resonator laser gyroscope, Applied Physics Letters, 1977, vol. 30, no. 9, pp. 478–480. https://doi.org/10.1063/1.89455

    Article  Google Scholar 

  4. Sanders, G.A., Prentiss, M.G., and Ezekiel, S., Passive ring resonator method for sensitive inertial rotation measurements in geophysics and relativity, Opt. Lett., 1981, vol. 6, no. 11, pp. 569–571.  https://doi.org/10.1364/ol.6.000569

    Article  Google Scholar 

  5. Meyer, R.E., Ezekiel, S., Stowe, D.W., and Tekippe, V.J., Passive fiber-optic ring resonator for rotation sensing, Opt. Lett., 1983, vol. 8, no. 12, pp. 644–646. https://doi.org/10.1364/OL.8.000644

    Article  Google Scholar 

  6. Ohtsu, M., Araki, S., Using a 1.5-μm DFB InGaAsP laser in a passive ring cavity-type fiber gyroscope, Appl. Opt., 1987, vol. 26, no. 3, pp. 464–470. https://doi.org/10.1364/AO.26.000464

    Article  Google Scholar 

  7. Ezekiel, S., Cole, J.A., Harrison, J., and Sanders, G., Passive cavity optical rotation sensor, Proc. SPIE, Laser Inertial Rotation Sensors, 1978, vol. 0157, p. 68. https://doi.org/10.1117/12.965467

  8. Lefevre, H.C., The Fiber Optic Gyroscope, 2nd Edition, Boston, MA: Artech House, 2014.

    Google Scholar 

  9. Armenise, M.N., Ciminelli, C., and Dell’olio, F., Advances in Gyroscope Technologies, Berlin Heidelberg: Springer-Verlag, 2011. https://doi.org/10.1007/978-3-642-15494-2

  10. Shupe, D.M., Fiber resonator gyroscope: sensitivity and thermal nonreciprocity, Appl. Opt., 1981, vol. 20, pp. 286–289. https://doi.org/10.1364/AO.20.000286

    Article  Google Scholar 

  11. Carroll, R., Coccoli, C.D., Cardarelli, D., and Coate, G.T., The passive resonator fiber optic gyro and comparison to the interferometer fiber gyro, Proc. SPIE, 1987, vol. 0719, pp. 169–177. https://doi.org/10.1117/12.937554

    Article  Google Scholar 

  12. Hotate, K., Kikuchi, Y., Analysis of thermooptically induced bias drift in resonator fiber optic gyro, Proc. SPIE Environmental and Industrial Sensing, 2001, vol. 4204, pp. 81–88. https://doi.org/10.1117/12.417431

  13. Haavisto, J.R., Thin-film waveguides for inertial sensors, Proc. SPIE, 1983, vol. 0412, pp. 221–228. https://doi.org/10.1117/12.935819

    Article  Google Scholar 

  14. Rosenthal, A.H., Regenerative circulatory multiple-beam interferometry for the study of light-propagation effects, J. Opt. Soc. Am., 1962, vol. 52, no. 10, pp. 1143–1148. https://doi.org/10.1364/JOSA.52.001143

    Article  Google Scholar 

  15. Iwatsuki, K., Hotate, K., and Higashiguchi, M., Effect of Rayleigh backscattering in an optical passive ring-resonator gyro, Appl Opt., 1984, vol. 23, no. 21, pp. 3916–3924. https://doi.org/10.1364/AO.23.003916

    Article  Google Scholar 

  16. Ma, H., He, Z., and Hotate, K., Reduction of backscattering induced noise by carrier suppression in waveguide-type optical ring resonator gyro, J. Lightwave Technol., 2011, vol. 29, no. 1, pp. 85–90. https://doi.org/10.1109/JLT.2010.2092751

    Article  Google Scholar 

  17. Wang, J., Feng, L., Wang, Q., Wang, X., and Jiao, H., Reduction of angle random walk by in-phase triangular phase modulation technique for resonator integrated optic gyro, Opt. Express, 2016, vol. 24, no. 5, pp. 5463–5468. https://doi.org/10.1364/OE.24.005463

    Article  Google Scholar 

  18. Zhu, J., Liu, W., Pan, Z., Tao, Y., Yin, S., Tang, J., and Liu, J., Combined frequency-locking technology of a digital integrated optical resonator gyroscope with a phase-modulated feedback loop, Appl. Opt., 2019, vol. 58, no. 36, pp. 9914–9920. https://doi.org/10.1364/AO.58.009914

    Article  Google Scholar 

  19. Mao, H., Ma, H., and Jin, Z., Resonator micro-optic gyroscope based on the double phase modulation technique, CLEO/QELS: 2010 Laser Science to Photonic Applications, San Jose, CA, USA, 2010, p. JWA52. https://doi.org/10.1364/CLEO.2010.JWA52

  20. Wang, Q., Feng, L., Li, H., Wang, X., Jia, Y., and Liu, D., Enhanced differential detection technique for the resonator integrated optic gyro, Opt Lett., 2018, vol. 43, no. 12, pp. 2941–2944. https://doi.org/10.1364/OL.43.002941

    Article  Google Scholar 

  21. Liu, L., Liu, S., Hu, J., Ma, H., and Jin, Z., Resonant fiber optic gyroscope using a reciprocal modulation and double demodulation technique, Opt Express., 2022, vol. 30, no. 7, pp. 12192–12203. https://doi.org/10.1364/AO.429941

    Article  Google Scholar 

  22. Zhang, Y., Feng, L., Li, H., Jiao, H., Liu, N., and Zhang, C., Resonant fiber optic gyroscope with three-frequency differential detection by sideband locking, Opt. Express, 2020, vol. 28, no. 6, pp. 8423–8435. https://doi.org/10.1364/OE.384636

    Article  Google Scholar 

  23. Liu, L., Li, H., Liu, S., Jin, Z., and Ma, H., Suppressing backscattering noise of a resonant fiber optic gyroscope using coherent detection, Appl. Opt., 2022, vol. 61, no. 15, pp. 4421–4428. https://doi.org/10.1364/AO.456095

    Article  Google Scholar 

  24. Benser, E., Sanders, G., Smickilas, M., Wu, J., and Strandjord, L., Development and evaluation of a navigation grade resonator fiber optic gyroscope, 2015 DGON Inertial Sensors and Systems Symposium (ISS), Karlsruhe, Germany, 2015, pp. 1–11. https://doi.org/10.1109/InertialSensors.2015.7314259

  25. Strandjord, L.K., Qiu, T., Salit, M., Narayanan, C., Smiciklas, M., Wu, J., and Sanders, G.A., Improved bias performance in resonator fiber optic gyros using a novel modulation method for error suppression, Proc. 26th International Conference on Optical Fiber Sensors, OSA Technical Digest, 2018, p. ThD3. https://doi.org/10.1364/OFS.2018.ThD3

  26. Niu, J., Liu, W., Pan, Z., Tao, Y., Zhou, Y., Xing, E., Tang, J., and Liu, J., The noise suppression in resonant micro optic gyroscopes based on dual light sources method, Optics Communications, 2021, vol. 488, p. 126839. https://doi.org/10.1016/j.optcom.2021.126839

    Article  Google Scholar 

  27. Shen, H., Chen, K., Zou, K., Gong, Y., Bi, R., and Shu, X., A hollow-core photonic-crystal fiber-optic gyroscope based on a parallel double-ring resonator, Sensors (Basel), 2021, vol. 21, no. 24, p. 8317. https://doi.org/10.3390/s21248317

    Article  Google Scholar 

  28. Iwatsuki, K., Hotate, K., and Higashiguchi, M., Eigenstate of polarization in a fiber ring resonator and its effect in an optical passive ring-resonator gyro, Appl. Opt., 1986, vol. 25, no. 15, pp. 2606–2612.  https://doi.org/10.1364/ao.25.002606

    Article  Google Scholar 

  29. Strandjord, L.K., Sanders, G.A., Resonator fiber optic gyro employing a polarization-rotating resonator, Proc. SPIE, 1992, vol. 1585, pp. 163–172. https://doi.org/10.1117/12.135044

    Article  Google Scholar 

  30. Ma, H., Yan, Y., Chen, Y., and Jin, Z., Improving long-term stability of a resonant micro-optic gyro by reducing polarization fluctuation, IEEE Photonics Journal, 2012, vol. 4, no. 6, pp. 2372–2381. https://doi.org/10.1109/JPHOT.2012.2232908

    Article  Google Scholar 

  31. Ma, H., Chen, Z., Yang, Z., Yu, X., and Jin, Z., Polarization-induced noise in resonator fiber optic gyro, Ap-pl. Opt., 2012, vol. 51, no. 28, pp. 6708–6717. https://doi.org/10.1364/AO.51.006708

    Article  Google Scholar 

  32. Bobbili, P.R., Nayak, J., Pinnoji, P.D., and Reddy, R.K., Parameter optimization analysis to minimize the polarization error in a localized thermal tunable fiber ring resonator gyro, Appl. Opt., 2016, vol. 55, no. 8, pp. 1996–2001. https://doi.org/10.1364/AO.55.001996

    Article  Google Scholar 

  33. Ma, H., Zhang, J., Chen, Z., and Jin, Z., Tilted waveguide gratings and implications for optical waveguide-ring resonator, J. Lightwave Technol., 2015, vol. 33, no. 19, pp. 4176–4183. https://doi.org/10.1109/JLT.2015.2466093

    Article  Google Scholar 

  34. Yan, Y., Ma, H., and Jin, Z., Reducing polarization-fluctuation induced drift in resonant fiber optic gyro by using single-polarization fiber, Opt. Express, 2015, vol. 23, no. 3, pp. 2002–2009. https://doi.org/10.1364/OE.23.002002

    Article  Google Scholar 

  35. Feng, C., Zhang, D., Zhang, Y., Qing, C., Ma, H., Li, H., and Feng, L., Resonant integrated optical gyroscope based on Si3N4 waveguide ring resonator, Opt. Express, 2021, vol. 29, no. 26, pp. 43875–43884. https://doi.org/10.1364/OE.445939

    Article  Google Scholar 

  36. Feng, C., Zhang, Y., Ma, H., Li, H., and Feng, L., Improving long-term temperature bias stability of an integrated optical gyroscope employing a Si3N4 resonator, Photon. Res., 2022, vol. 10, no. 7, pp. 1661–1668. https://doi.org/10.1364/OE.445939

    Article  Google Scholar 

  37. Liu, S., Lin, Y., Jin, X., Ma, H., and Jin, Z., Polarization error in resonant micro-optic gyroscope with different waveguide-type ring resonator structures, Appl. Opt., 2022, vol. 61, no. 15, pp. 4287–4295. https://doi.org/10.1364/AO.457490

    Article  Google Scholar 

  38. Iwatsuki, X., Hotate, K., and Higashiguchi, M., Kerr effect in optical passive ring-resonator gyros, Optical Fiber Sensors, 1985, p. ThGG13. https://doi.org/10.1364/OFS.1985.ThGG13

  39. Takiguchi, K., Hotate, K., Method to reduce the optical Kerr-effect-induced bias in an optical passive ring-resonator gyro, IEEE Photonics Technol. Lett., 1992, vol. 4, no. 2, pp. 203–206. https://doi.org/10.1364/OFS.1992.W23

    Article  Google Scholar 

  40. Li, X., Zhang, J., Ma, H., and Jin, Z., Test and analysis of the optical Kerr-effect in resonant micro-optic gyros, IEEE Photonics Journal, 2014, vol. 6, no. 5, pp. 1–7. https://doi.org/10.1109/JPHOT.2014.2352635

    Article  Google Scholar 

  41. Ma, H., Li, X., Zhang, G., and Jin, Z., Reduction of optical Kerr-effect induced error in a resonant micro-optic gyro by light-intensity feedback technique, Appl Opt., 2014, vol. 53, no. 16, pp. 3465–3472. https://doi.org/10.1364/AO.53.003465

    Article  Google Scholar 

  42. Yin, S., Liu, W., Xing, E., Pan, Z., Tao, Y., Zhu, J., Tang, J., and Tang J., Suppression of laser intensity fluctuation in optical resonator gyro by a simple light intensity feedback technique, Optical Engineering, 2020, vol. 59, no. 3, p. 036112. https://doi.org/10.1117/1.OE.59.3.036112

    Article  Google Scholar 

  43. Niu, J., Liu, W., Pan, Z., Tao, Y., Zhou, Y., Xing, E., Liu, J., and Tang, J., Reducing backscattering and the Kerr noise in a resonant micro-optic gyro using two independent lasers, Appl. Opt., 2021, vol. 60, no. 10, pp. 2761–2766. https://doi.org/10.1364/AO.417006

    Article  Google Scholar 

  44. Iwatsuki, K., Hotate, K., and Higashiguchi, M., Kerr effect in an optical passive ring-resonator gyro, Journal of Lightwave Technology, 1986, vol. 4, no. 6, pp. 645–651. https://doi.org/10.1364/OFS.1985.ThGG13

    Article  Google Scholar 

  45. Ying, D., Ye, K., Wang, Z., Xie, T., and Jin, Z., A harmonic subtraction technique to suppress intensity modulation induced Kerr effect drift in a closed-loop RFOG, Optics Communications, 2018, vol. 426, pp. 562–569. https://doi.org/10.1016/j.optcom.2018.05.078

    Article  Google Scholar 

  46. Yu, X., Liao, Y., Zhang, M., Shi, Q., Yu, Y., and Li, D., Kerr effect in a passive optical ring-resonator gyroscope using a hollow-core photonic-band fiber, Proc. SPIE, 2008, vol. 6830, pp. 683024. https://doi.org/10.3788/CJL20083503.0430

    Article  Google Scholar 

  47. Ying, D., Demokan, M.S., Zhang, X., and Jin, W., Analysis of Kerr effect in resonator fiber optic gyros with triangular wave phase modulation, Appl. Opt., 2010, vol. 49, no. 3, pp. 529–535. https://doi.org/10.1364/AO.49.000529

    Article  Google Scholar 

  48. Filatov, Y.V., Kukaev, A.S., Shalymov, E.V., and Venediktov, V.Yu., Investigation of a ring confocal resonator sample designed to work as an optical resonator gyroscope sensitive element, Proc. SPIE, 2022, vol. 12274, p. 1227417. https://doi.org/10.1117/12.2635922

    Article  Google Scholar 

  49. Ito, T., Hotate, K., Closed-loop operation in the resonator fiber optic gyro using Faraday effect with a twisted single-mode-fiber resonator, Proc. Fiber Optic Gyros: 20th Anniversary Conference, 1996, vol. 2837, pp. 260–271. https://doi.org/10.1117/12.258186

  50. Wang, Z., Wang, G., Gao, W., and Cheng, Y., Suppression of Kerr-effect induced error in resonant fiber optic gyro by a resonator with spun fiber, Opt. Express, 2021, vol. 29, no. 13, pp. 19631–19642. https://doi.org/10.1364/OE.424987

    Article  Google Scholar 

  51. Li, H., Lin, Y., Liu, L., Ma, H., and Jin, Z., Signal processing improvement of passive resonant fiber optic gyroscope using a reciprocal modulation-demodulation technique, Opt. Express, 2020, vol. 28, no. 12, pp. 18103–18111. https://doi.org/10.1364/OE.390605

    Article  Google Scholar 

  52. Zhang, X., Ma, H., Jin, Z., Ding, C., Open-loop operation experiments in a resonator fiber-optic gyro using the phase modulation spectroscopy technique, Appl. Opt. 2006, vol. 45, no. 31, pp. 7961–7965. https://doi.org/10.1364/AO.45.0079611

    Article  Google Scholar 

  53. Jin, Z., Yu, X., and Ma, H., Closed-loop resonant fiber optic gyro with an improved digital serrodyne modulation, Optics express, 2013, vol. 21, no. 22, pp. 26578–26588. https://doi.org/10.1117/12.2026050

    Article  Google Scholar 

  54. Ma, H., Zhang, J., Wang, L., and Jin, Z., Double closed-loop resonant micro optic gyro using hybrid digital phase modulation, Opt. Express, 2015, vol. 23, no. 12, pp. 15088–15097. https://doi.org/10.1364/OE.23.015088

    Article  Google Scholar 

  55. Ying, D., Ma, H., and Jin, Z., Resonator fiber optic gyro using the triangle wave phase modulation technique, Optics Communications, 2008, vol. 281, no. 4, pp. 580–586. https://doi.org/10.1016/j.optcom.2007.10.012

    Article  Google Scholar 

  56. Ma, H., Chen, Y., Li, M., and Jin, Z., Transient response of a resonator fiber optic gyro with triangular wave phase modulation, Appl. Opt., 2010, vol. 49, no. 32, pp. 6253–6263. https://doi.org/10.1364/AO.49.006253

    Article  Google Scholar 

  57. Jiang, Z., Hu, Z., Kang, W., Wang, J., and Fu, C., Residual intensity modulation-induced error in resonator fiber optic gyroscopes with triangular phase modulation, Appl. Opt., 2019, vol. 58, no. 27, pp. 7597–7602. https://doi.org/10.1364/AO.58.007597

    Article  Google Scholar 

  58. Ma, H., Yu, X., and Jin, Z., Reduction of polarization-fluctuation induced drift in resonator fiber optic gyro by a resonator integrating in-line polarizers, Opt. Lett., 2012, vol. 37, no. 16, pp. 3342–3344. https://doi.org/10.1364/OL.37.003342

    Article  Google Scholar 

  59. Wang, J., Feng, L., Tang, Y., and Zhi, Y., Resonator integrated optic gyro employing trapezoidal phase modulation technique, Opt. Lett., 2015, vol. 40, no. 2, pp. 155–158. https://doi.org/10.1364/OL.40.000155

    Article  Google Scholar 

  60. Hotate, K., Harumoto, M., Resonator fiber optic gyro using digital serrodyne modulation, Optical Fiber Sensors, 1996, p. Tu35. https://doi.org/10.1364/OFS.1996.Tu35

  61. Mao, H., Ma, H., and Jin, Z., Polarization maintaining silica waveguide optical resonator gyro using double phase modulation technique, Opt. Express, 2011, vol. 19, no. 5, pp. 4632–4643. https://doi.org/10.1364/OE.19.004632

    Article  Google Scholar 

  62. Feng, L., Lei, M., Liu, H., Zhi, Y., and Wang, J., Suppression of backreflection noise in a resonator integrated optic gyro by hybrid phase-modulation technology, Appl. Opt., 2013, vol. 52, no. 8, pp. 1668–1675. https://doi.org/10.1364/AO.52.001668

    Article  Google Scholar 

  63. Hotate, K., Takiguchi, K., and Hirose, A., Adjustment-free method to eliminate the noise induced by the backscattering in an optical passive ring-resonator gyro, IEEE Photonics Technology Letters, 1990, vol. 2, no. 1, pp. 75–77.  https://doi.org/10.1109/68.47048

    Article  Google Scholar 

  64. Jiao, H., Feng, L., Zhang, C., Liu, N., Zhang, Y., and Ma, H., Design of low-crosstalk polarizing resonator and homologous multi-frequency differential detection for hollow-core photonic-crystal fiber optic gyro, Opt. Express, 2019, vol. 27, no. 14, pp. 19536–19547. https://doi.org/10.1364/OE.27.019536

    Article  Google Scholar 

  65. Jiao, H., Wang, T., Gao, H., Feng, L., and Ma, H., Dynamic free-spectral-range measurement for fiber resonator based on digital-heterodyne optical phase-locked loop, Optics and Photonics J., 2021, vol. 11, pp. 332–340.  https://doi.org/10.4236/opj.2021.118023

    Article  Google Scholar 

  66. Ma, H., Zhang, X., Jin, Z., and Ding, C., Waveguide-type optical passive ring resonator gyro using phase modulation spectroscopy technique, Optical Engineering, 2006, vol. 45, no. 8, p. 080506. https://doi.org/10.1117/1.2280645

    Article  Google Scholar 

  67. Duan, R., Feng, L., Jiao, H., and Wang, X., Research on reducing the influence of laser frequency noise on optical resonator gyro, IEEE Sensors Journal, 2017, vol. 17, no. 8, pp. 2422–2427.  https://doi.org/10.1109/JSEN.2017.2677971

    Article  Google Scholar 

  68. Filatov, Y.V., Kukaev, A.S., Nikolaeva, N.A., Shalymov, E.V., and Venediktov, V.Y., Method for measuring angular velocity using a passive ring resonator and a Mach–Zehnder modulator, Optical Engineering, 2020, vol. 59, no. 7, p. 074106.  https://doi.org/10.1117/1.OE.59.7.074106

  69. Filatov, Y.V., Gilev, D.G., Goncharova, P.S., Krishtop, V.V., Kukaev, A.S., Ovchinnikov, K.A., Sevryu-gin, A.A., Shalymov, E.V., and Venediktov, V.Y., Experimental investigation of an optical resonator gyroscope with a Mach–Zehnder modulator and its sensitive elements, Photonics, 2023, vol. 10, no. 1, p. 4. https://doi.org/10.3390/photonics10010004

    Article  Google Scholar 

  70. Geng, J., Yang, L., Zhao, S., and Zhang, Y., Resonant micro-optical gyro based on self-injection locking, Opt. Express, 2020, vol. 28, no. 22, pp. 32907–32915. https://doi.org/10.1364/OE.405974

    Article  Google Scholar 

  71. Li, Y., Liu, W., Pan, Z., Tao, Y., Zhang, W., Xing, T., Xing, E., Zhou, Y., Tang, J., and Liu, J., Self-injection locking technique for resonant micro-optical gyroscope, Optical Engineering, 2022, vol. 60, no. 1, p. 014103. https://doi.org/10.1117/1.oe.61.1.014103

    Article  Google Scholar 

  72. Novikov, M.A., Ivanov, V.V., Optic gyroscope with a passive ring resonator, Patent RU2124185, 1997.

  73. Novikov, M.A., Ivanov, V.V., Resonance circular interferometry using non-coherent light, Pis’ma v ZhTF, 1998, vol. 24, no. 17, pp. 24–29.

    Google Scholar 

  74. Ivanov, V.V., Novikov, M.A., and Gelikonov, V.M., Observation of the Sagnac effect in a ring resonant interferometer with a low-coherence light source, Quantum Electronics, 2000, vol. 30, no. 2, pp. 119–124.  https://doi.org/10.1070/QE2000v030n02ABEH001671

    Article  Google Scholar 

  75. Zhao, S., Liu, Q., Liu, Y., Ma, H., and He, Z., Navigation-grade resonant fiber-optic gyroscope using ultra-simple white-light multibeam interferometry, Photon. Res., 2022, vol. 10, no. 2, pp. 542–549. https://doi.org/10.1364/PRJ.443496

    Article  Google Scholar 

  76. Zhao, S., Liu, Q., Ma, H., and He, Z., White-light-driven resonant fiber-optic gyro based on round trip filtering scheme, Opt. Lett., 2022, vol. 47, no. 5, pp. 1137–1140. https://doi.org/10.1364/OL.451372

    Article  Google Scholar 

  77. Liu, S., Liu, L., Hu, J., Liu, Q., Ma, H., and He, Z., Reduction of relative intensity noise in a broadband source-driven RFOG using a high-frequency modulation technique, Opt. Lett., 2022, vol. 47, no. 19, pp. 5100–5103. https://doi.org/10.1364/OL.470933

    Article  Google Scholar 

  78. Ovchinnikov, K.A., Gilev, D.G., Krishtop, V.V., Volyntsev, A.B., Maksimenko, V.A., Garkushin, A.A., Filatov, Y.V., Kukaev, A.S., Sevryugin, A.A., Shalymov, E.V., Venediktova, A.V., and Venediktov, V.Y., A prototype for a passive resonant interferometric fiber optic gyroscope with a 3 × 3 directional coupler, Sensors, 2023, vol. 23, no. 3, pp. 1319. https://doi.org/10.3390/s23031319

    Article  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation (Grant no. FSEE-2020-0005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Filatov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venediktov, V.Y., Filatov, Y.V. & Shalymov, E.V. State-of-the-Art Optical Resonator Gyroscopes. Gyroscopy Navig. 14, 27–35 (2023). https://doi.org/10.1134/S207510872301008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207510872301008X

Keywords:

Navigation