Skip to main content
Log in

Reverse Micelles and Protomicelles of Tetraethylene Glycol Monododecyl Ether in Systems with Heptane and Nile Red

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The micellization processes in the systems tetraethylene glycol monododecyl ether (C12E4)–heptane (1) and C12E4–Nile red–heptane (2) have been studied by electron absorption spectroscopy. In system 1, reverse micelles of small size appear, which makes it difficult to find the critical micelle concentration (CMC). In this regard, a method for determining CMC based on spectroscopic data was tested. The same one was done for system 2, where the appearance of Nile red as a C12E4 nano-adsorbent leads to the formation of protomicelles below the CMC. The CMC itself in system 2 turns out to be lower than the CMC in system 1, which corresponds to the predictions of the theory. The water role in the formation of reverse micelles was studied using a commercial analogue of C12E4 preparation Brij 30 (with a water content of 1%). The results obtained are consistent with theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Smirnova, A.V., Koretskii, A.F., and Sokolovskaya, N.A., Kolloid. Zh., 1976, vol. 38, no. 4, p. 726.

    CAS  Google Scholar 

  2. Ravey, J.C., Buzier, M., and Picot, J.C., J. Colloid Interface Sci., 1984, vol. 97, no. 1, p. 9. https://doi.org/10.1016/0021-9797(84)90269-8

    Article  CAS  Google Scholar 

  3. Correa, N.M., Silber, J.J., Riter, R.E., and Levinger, N.E., Chem. Rev., 2012, vol. 112, p. 4569. https://doi.org/10.1021/cr200254q

    Article  CAS  PubMed  Google Scholar 

  4. Smith, G.N., Brown, P., Rogers, S.E., and Eastoe, J., Langmuir, 2013, vol. 29, p. 3252. https://doi.org/10.1021/la400117s

    Article  CAS  PubMed  Google Scholar 

  5. Kurtanidze, M., Butkhuzi, T., Rukhadze, M., Kokiashvili, N., Bezarashvili, G., Marcus, J., Werner, K., and Sigua, K., Colloids Surf. (A), 2017, vol. 519, p. 98. https://doi.org/10.1016/j.colsurfa.2016.05.024

    Article  CAS  Google Scholar 

  6. Eicke, H.-F. and Christen, H., Helv. Chim. Acta, 1978, vol. 61, p. 2258. https://doi.org/10.1002/hlca.19780610631

    Article  CAS  Google Scholar 

  7. Ruckenstein, E. and Nagarajan, R., J. Phys. Chem., 1980, vol. 84, p. 1349. https://doi.org/10.1021/j100448a013

    Article  CAS  Google Scholar 

  8. Nagarajan, R. and Ruckenstein, E., Langmuir, 1991, vol. 7, p. 2934. https://doi.org/10.1021/la00060a012

    Article  CAS  Google Scholar 

  9. Chowdhary, J. and Ladanyi, B.M., J. Phys. Chem. (B), 2009, vol. 113, p. 15029. https://doi.org/10.1021/jp906915q

    Article  CAS  Google Scholar 

  10. Fathi, H., Kelly, J.P., Vasquez, V.R., and Graeve, O.A., Langmuir, 2012, vol. 28, p. 9267. https://doi.org/10.1021/la300586f

    Article  CAS  PubMed  Google Scholar 

  11. Lemyre, J.-L., Lamarre, S., Beauprế, A., and Ritcey, A.M., Langmuir, 2010, vol. 26, no. 13, p. 10524. https://doi.org/10.1021/la100541m

    Article  CAS  PubMed  Google Scholar 

  12. Bradley-Shaw, J.L., Camp, P.J., Dowding, P.J., and Lewtas, K., J. Phys. Chem. (B), 2015, vol. 119, no. 11, p. 4321. https://doi.org/10.1021/acs.jpcb.5b00213

    Article  CAS  Google Scholar 

  13. Khoshnood, A. and Firoozabadi, A., Langmuir, 2015, vol. 31, no. 22, p. 5982. https://doi.org/10.1021/la504658u

    Article  CAS  PubMed  Google Scholar 

  14. Smith, G.N., Brown, P., James, C., Rogers, S.E., and Eastoe, J., Colloids Surf. (A), 2016, vol. 494, p. 194. https://doi.org/10.1016/j.colsurfa.2016.01.020

    Article  CAS  Google Scholar 

  15. Eskici, G. and Axelsen, P.H., J. Phys. Chem. (B), 2016, vol. 120, p. 11337. https://doi.org/10.1021/acs.jpcb.6b06420

    Article  CAS  Google Scholar 

  16. Urano, R., Pantelopulos, G.A., and Straub, J.E., J. Phys. Chem. (B), 2019, vol. 123, no. 11, p. 2546. https://doi.org/10.1021/acs.jpcb.8b07847

    Article  CAS  Google Scholar 

  17. Rusanov, A.I., Colloid J., 2020, vol. 82, no. 5, p. 560. https://doi.org/10.1134/S1061933X20050130

    Article  CAS  Google Scholar 

  18. Volkov, N.A., Shchekin, A.K., Posysoev, M.V., Eroshkin, Yu.A., and Adzhemyan, L.C., Abstract of Papers, Mezhd. nauch. konf. “Sovremennaya khimicheskaya fizika na styke fiziki, khimii i biologii” (Int. Sci. Conf. “Modern Chemical Physics at the Intersection of Physics, Chemistry, and Biology”), Chernogolovka: IPKhF RAN, 2021, p. 418.

  19. Shchekin, A.K., Adzhemyan, L.C., Eroshkin, Yu.A., and Volkov, N.A., Colloid J., 2022, vol. 84, no. 1, p. 109. https://doi.org/10.1134/S1061933X22010124

    Article  CAS  Google Scholar 

  20. Rusanov, A.I., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Khimiya, 1992.

  21. Rusanov, A.I., Micellization in Surfactant Solutions. Chemistry Reviews, vol. 22, Reading: Harwood Academic Publ., 1996. ISBN 90-5702-297-4.

  22. Rusanov, A.I. and Shchekin, A.K., Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv (Micellization in Surfactant Solutions), St. Petersburg: Lan’, 2016.

  23. Hungerford, G., Castanheira, E.M.S., Real Oliveira, E.C.D., da Graҫua Miguel, М., and Burrows, H.D., J. Phys. Chem. (B), 2002, vol. 106, no. 16, p. 4061. https://doi.org/10.1021/jp013047v

    Article  CAS  Google Scholar 

  24. Stuart, M.C.A., van de Pas, J.C., and Engberts, J.B.F.N., J. Phys. Org. Chem., 2005, vol. 18, p. 929. https://doi.org/10.1002/poc.919

    Article  CAS  Google Scholar 

  25. Rusanov, A.I., Movchan, T.G., and Plotnikova, E.V., Doklady Phys. Chem., 2020, vol. 495, p. 181. https://doi.org/10.1134/S0012501620120027

    Article  CAS  Google Scholar 

  26. Movchan, T.G., Rusanov, A.I., and Plotnikova, E.V., Colloid. J., 2021, vol. 83, p. 356. https://doi.org/10.1134/S1061933X21030121

    Article  CAS  Google Scholar 

  27. Movchan, T.G., Rusanov, A.I., and Plotnikova, E.V., Colloid. J., 2021, vol. 83, p. 468. https://doi.org/10.1134/S1061933X21040062

    Article  CAS  Google Scholar 

  28. Rusanov, A.I., Colloids Surf. (A), 2021, vol. 629, p. 127453. https://doi.org/10.1016/j.colsurfa.2021.127453

    Article  CAS  Google Scholar 

  29. Ray, A., Das, S., and Chattopadhyay, N., ACS Omega, 2019, vol. 4, p. 15. https://doi.org/10.1021/acsomega.8b02503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Datta, A., Mandal, D., Pal, S.K., and Bhattacharyya, K., J. Phys. Chem. (B), 1997, vol. 101, p. 10221. https://doi.org/10.1021/jp971576m

    Article  CAS  Google Scholar 

  31. Sverdlova, O.V., Elektronnye spektry v organicheskoi khimii (Electronic Spectra in Organic Chemistry), Leningrad: Khimiya: 1973.

  32. Greenspan, P. and Fowler, S.D., J. Lipid Res., 1985, vol. 26, p. 781.

    Article  CAS  Google Scholar 

  33. Dutta, A.K., Kamada, K., and Ohta, K., J. Photochem. Photobiol. (A), 1996, vol. 93, p. 57. https://doi.org/10.1016/1010-6030(95)04140-0

    Article  CAS  Google Scholar 

  34. Alekseeva, V.I., Marinina, L.E., Savvina, L.P., Zikirina, A.M., and Ibraev, N.Kh., Russ. J. Phys. Chem. (A), 2005, vol. 79, no. 3, p. 415.

    CAS  Google Scholar 

  35. Gaynanova, G.A., Valeeva, F.G., Kushnazarova, R.A., Bekmukhametova, A.M., Zakharov, S.V., Mirgorodskaya, A.B., and Zakharova, L.Ya., Russ J. Phys. Chem. (A), 2018, vol. 92, no. 7, p. 1400. https://doi.org/10.1134/S0036024418070129

    Article  CAS  Google Scholar 

  36. Rehman, A., Usman, M., Bokhari, T.H., Abd Ur Rahman, H.M., Mansha, A., Siddiq, M., Rasheed, A., Un Nisa, M., Colloids Surf. (A), 2020, vol. 586, p. 124241. https://doi.org/10.1016/j.colsurfa.2019.124241

    Article  CAS  Google Scholar 

  37. Movchan, T.G., Plotnikova, E.V., and Us’yarov, O.G., Colloid. J., 2013, vol. 75, p. 319. https://doi.org/10.1134/S1061933X13030137

    Article  CAS  Google Scholar 

  38. Greksáková, O., Oremusová, J., Vojteková, M., and Kopecký, F., Chem. Pap., 1994, vol. 48, no. 5, p. 300.

    Google Scholar 

  39. Mohr, A., Talbiersky, P., Korth, H.-G., Sustmann, R., Boese, R., Blaser, D., and Rehage, H., J. Phys. Chem. (B), 2007, vol. 111, no. 45, p. 12985. https://doi.org/10.1021/jp0731497

    Article  CAS  Google Scholar 

  40. Movchan, T.G., Plotnikova, E.V., Soboleva, I.V., and Rusanov, A.I., Colloid. J., 2017, vol. 79, p. 368. https://doi.org/10.1134/S1061933X17030115

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task of the Ministry of Science and Higher Education of the Russian Federation on the topic Physicochemical problems of creating effective nano- and supramolecular systems (subject registration no. 122011300052-1) with partial financial support from the Russian Foundation for Basic Research (project no. 20-03-00641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Movchan.

Ethics declarations

No conflict of interest was declared by the authors.

Additional information

To the 90th Anniversary of the Birth of A.I. Rusanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Movchan, T.G., Rusanov, A.I. & Plotnikova, E.V. Reverse Micelles and Protomicelles of Tetraethylene Glycol Monododecyl Ether in Systems with Heptane and Nile Red. Russ J Gen Chem 92, 650–658 (2022). https://doi.org/10.1134/S1070363222040065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363222040065

Keywords:

Navigation