Skip to main content
Log in

Soil Respiration and Carbon Sequestration: A Review

  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

An increase in the concentration of carbon dioxide in the atmosphere is a trigger for the activation of all processes of the carbon cycle, including soil respiration (SR), because it causes not only the greenhouse effect of the atmosphere but also its fertilization. A consequence of fertilization is a tendency for the rise in the global net primary production (NPP) of photosynthesis and soil heterotrophic respiration (HR). An increase in the global terrestrial carbon sink has been accompanied by the rise in the CO2 concentration in the atmosphere. The global increase in HR is related to the global losses in soil organic carbon, which is confirmed by the models showing that the mean residence time (MRT) of organic carbon in soil pool has decreased by 4.4 years over the last century. To assess the level of C sequestration in soils, it is necessary to determine the balance between the soil HR and the amount of new soil C sink in the form of the net biome production (NBP) resistant to mineralization. The carbon sink into net ecosystem production (NEP) determines the short-term unsustainable carbon sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. M. Alferov, V. G. Blinov, M. L. Gitarskii, V. A. Grabar, D. G. Zamolodchikov, et al., Monitoring of Greenhouse Gas Fluxes in Natural Ecosystems (Amirit, Saratov, 2017) [in Russian].

    Google Scholar 

  2. N. I. Bazilevich, Biological Productivity of the Ecosystems of Northern Eurasia (Nauka, Moscow, 1993) [in Russian].

    Google Scholar 

  3. S. A. Blagodatskii, A. A. Larionova, and I. V. Evdokimov, “Contribution of root respiration to CO2 emission from the soil,” in Soil Respiration (Pushchino, 1993) [in Russian].

  4. A. B. Demidov, V. I. Gagarin, and S. V. Sheberstov, “Impact of regional warming on primary production of the Kara Sea in the last two decades (2002–2021),” Oceanology (Engl. Transl.) 63 (2), 195–211 (2023).

  5. Soil Respiration, Ed. by G. A. Zavarzin and V. N. Kudeyarov (Pushchino, 1993) [in Russian].

    Google Scholar 

  6. I. V. Yevdokimov, A. A. Larionova, M. Schmitt, V. O. Lopes de Gerenyu, and M. Bahn, “Experimental assessment of the contribution of plant root respiration to the emission of carbon dioxide from the soil,” Eurasian Soil Sci. 43 (12), 1373–1382 (2010). https://doi.org/10.1134/S1064229310120070

    Article  Google Scholar 

  7. G. A. Zavarzin, “Foreword,” in Soil Respiration (Pushchi-no, 1993), pp. 3–10 [in Russian].

  8. A. S. Isaev and G. N. Korovin, “Carbon in the forests of Northern Eurasia. The carbon cycle in Russia,” in Global Changes in the Natural Environment and Climate. Selected Scientific Works (Moscow, 1999), pp. 63–95 [in Russian].

    Google Scholar 

  9. A. S. Isaev, G. N. Korovin, V. I. Sukhikh, et al., Environmental Problems of Carbon Dioxide Absorption through Reforestation and Afforestation in Russia (Analytical Review) (Tsentr Ekol. Polit., Moscow, 1995) [in Russian].

    Google Scholar 

  10. D. V. Karelin and D. G. Zamolodchikov, Carbon Exchange in Cryogenic Ecosystems (Nauka, Moscow, 2008) [in Russian].

    Google Scholar 

  11. V. I. Kiryushin and S. V. Kiryushin, Agrotechnologies (Lan’, St. Petersburg, 2015) [in Russian].

  12. V. N. Kudeyarov, “The contribution of soil to the CO2 balance of the atmosphere in Russia,” Dokl. Akad. Nauk 375 (2), 275–277 (2000).

    Google Scholar 

  13. V. N. Kudeyarov, F. I. Khakimov, N. F. Deeva, et al., “Estimation of Russian soil respiration,” Pochvovedenie, No. 1, 33–42 (1995).

    Google Scholar 

  14. I. N. Kurganova and V. N. Kudeyarov, “Estimation of carbon dioxide fluxes from soils of the taiga zone of Russia,” Pochvovedenie, No. 9, 1058–1070 (1998).

    Google Scholar 

  15. I. N. Kurganova, V. O. Lopes de Gerenyu, D. A. Khoroshaev, T. N. Myakshina, D. V. Sapronov, V. A. Zhmurin, and V. N. Kudeyarov, “Analysis of the long-term soil respiration dynamics in the forest and meadow cenoses of the Prioksko-Terrasny Biosphere Reserve in the perspective of current climate trends,” Eurasian Soil Sci. 53 (10), 1421–1436 (2020). https://doi.org/10.1134/S1064229320100117

    Article  Google Scholar 

  16. A. A. Larionova, I. V. Evdokimov, I. N. Kurganova, D. V. Sapronov, L. G. Kuznetsova, and V. O. Lopes de Gerenyu, “Root respiration and its contribution to soil emissions,” Pochvovedenie, No. 3, 183–194 (2003).

    Google Scholar 

  17. A. A. Larionova, L. A. Ivannikova, and T. S. Demkina, “Methods for determining CO2 emissions from soil,” in Soil Respiration (Pushchino, 1993), pp. 11–26 [in Russian].

  18. A. A. Larionova, D. V. Sapronov, V. O. Lopez de Gerenyu, L. G. Kuznetsova, and V. N. Kudeyarov, “Contribution of plant root respiration to the CO2 emission from soil,” Eurasian Soil Sci. 39 (10), 1127–1135 (2006).

    Article  Google Scholar 

  19. V. E. Ostroumov and A. N. Butsenko, Soil Respiration (Pushchino, 1993) [in Russian].

    Google Scholar 

  20. Pools and Flows of Carbon in Terrestrial Ecosystems in Russia, Ed. by G. A. Zavarzin and V. N. Kudeyarov (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  21. N. S. Panikov, M. V. Paleeva, S. N. Dedysh, and A. G. Dorofeev, “Kinetic methods for determining the biomass and activity of various groups of soil microorganisms,” Pochvovedenie, No. 8, 109–120 (1991).

    Google Scholar 

  22. L. E. Rodin and N. I. Bazilevich, Dynamics of Organic Matter and the Biological Cycle of Ash Elements and Nitrogen in the Main Types of Vegetation on the Globe (Nauka, Moscow–Leningrad, 1965) [in Russian].

  23. Ya. G. Ryskov, I. V. Ivanov, V. A. Demkin, and R. F. Khakimov, “Dynamics of carbonate reserves in Russian soils over historical time and their role as a buffer reservoir of atmospheric carbon dioxide,” Pochvovedenie, No. 8, 934–942 (1997).

    Google Scholar 

  24. D. G. Fedorov-Davydov, “Respiratory activity of tundra biogeocenoses and soils of the Kolyma lowland,” Pochvovedenie, No. 3, 291–301 (1998).

    Google Scholar 

  25. L. K. Shevtsova, V. A. Romanenkov, G. V. Blogoveshchenskii, G. V. Khaidukov, and S. O. Kanzyvaa, “Structure of carbon balance and bioenergetic assessment of its components in agrocenoses of long-term field experiments,” Agrokhimiya, No. 12, 67–75 (2015).

    Google Scholar 

  26. E. F. Ali, H. M. Al-Yasi, A. M. S. Kheir, M. A. Eissa, et al., “Effect of biochar on CO2 sequestration and productivity of pearl millet plants grown in saline sodic soils,” J. Soil Sci. Plant Nutr. 21 (2), 897–907 (2021). https://doi.org/10.1007/s42729-021-00409-z

    Article  Google Scholar 

  27. M. Bahn, M. Reichstein, E. A. Davidson, J. Grunzweig, et al., “Soil respiration at mean annual temperature predicts annual total across vegetation types and biomes,” Biogeosciences 7, 2147–2157 (2010). https://doi.org/10.5194/bg-7-2147-2010

    Article  Google Scholar 

  28. M. Berhane, M. Xu, Z. Y. Liang, J. Shi, et al., “Effects of long-term straw return on soil organic carbon storage and sequestration rate in North China upland crops: a meta-analysis,” Global Change Biol. 26 (4), 2686–2701 (2020). https://doi.org/10.1111/gcb.15018

    Article  Google Scholar 

  29. B. Bond-Lamberty and A. Thomson, “A global database of soil respiration data,” Biogeosciences 7, 1915–1926 (2010). https://doi.org/10.5194/bg-7-1915-2010

    Article  Google Scholar 

  30. B. Bond-Lamberty and A. Thomson, “Temperature-associated increases in the global soil respiration record,” Nature 464, 579–582 (2010). https://doi.org/10.1038/nature08930

    Article  Google Scholar 

  31. J. G. Canadell, P. M. S. Monteiro, M. H. Costa, L. Cotrim da Cunha, P. M. Cox, et al., “Global carbon and other biogeochemical cycles and feedbacks,” in Climate Change (Cambridge, 2021), pp. 673–816. https://doi.org/10.1017/9781009157896.007

  32. Climate Change. The Supplementary Report to the IPCC Scientific Assessment, Ed. by J. T. Houghton (Cambridge, 1992).

    Google Scholar 

  33. Climate Change, Ed. by J. T. Hougton (IPCC, 1996).

    Google Scholar 

  34. H. V. Cooper, S. Sjogersten, R. M. Lark, et al., “To till or not to till in a temperate ecosystem? Implications for climate change mitigation,” Environ. Res. Lett. 16, 054022 (2021).

    Article  Google Scholar 

  35. R. K. Dewi, M. Fukuda, N. Takashima, et al., “Soil carbon sequestration and soil quality change between no-tillage and conventional till soil management after 3 and 11 years of organic farming,” Soil Sci. Plant Nutr. 68 (1), 133–148 (2022). https://doi.org/10.1080/00380768.2021.1997552

    Article  Google Scholar 

  36. W. Ding, J. Luo, J. Li, H. Yu, et al., “Effect of long-term compost and inorganic fertilizer application on background N2O and fertilizer induced N2O emissions from an intensively cultivated soil,” Sci. Total Environ. 465, 115–124 (2013). https://doi.org/10.1016/j.scitotenv.2012.11.020

    Article  Google Scholar 

  37. A. J. Dolman, A. Shvidenko, D. Schepaschenko, et al., “An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion method,” Biogeosciences 9, 5323–5340 (2012). https://doi.org10.5194/bg-9-5323-2012

    Article  Google Scholar 

  38. A. El-Naggar, A. H. El-Naggar, S. M. Shah, et al., “Biochar composition-dependent impacts on soil nutrient release, carbon mineralization, potential environmental risk: a review,” J. Environ. Manage. 241, 458–467 (2019). https://doi.org/10.1016/j.jenvman.2019.02.044

    Article  Google Scholar 

  39. P. Friedlingstein, M. W. Jones, M. O' Sullivan, R. M. Andrew, et al., “Global carbon budget 2021,” Earth Syst. Sci. Data 14, 1917–2005 (2022). https://doi.org/10.5194/essd-14-1917-2022

    Article  Google Scholar 

  40. Global Carbon Project. Supplemental Data of Global Carbon Budget 2022. Version 1.0. Data Set. Global Carbon Project (2022). https://doi.org/10.18160/gcp-2022

  41. GAW DATA Greenhouse Gases and Other Atmospheric Gases (World Meteorological Organization, Japan, 2018), Vol. 4.

  42. D. Haaf, J. Six, and S. Doetterl, “Global patterns of geo-ecological controls on the response of soil respiration to warming,” Nat. Clim. Change 11, 623–627 (2021). https://doi.org/10.1038/s41558-021-01068-9

    Article  Google Scholar 

  43. IPCC 2019. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Ed. by E. Buendia (IPCC, 2019).

    Google Scholar 

  44. S. X. Jia, A. Z. Liang, S. X. Zhang, et al., “Effect of tillage system on soil CO2 flux, soil microbial community and maize (Zea maize yield),” Geoderma 384, 114813 (2021). https://doi.org/10.1016/j.geoderma.2020.114813

    Article  Google Scholar 

  45. J. S. Jian, X. Du, M. S. Reiter, et al., “A meta-analysis of global cropland soil carbon changes due to cover cropping,” Soil Biol. Biochem. 143, 107735 (2020). https://doi.org/10.1016/j.soilbio.2020.107735

    Article  Google Scholar 

  46. J. Jian, R. Vargas, K. Anderson-Teixeira, E. Stell, et al., “A restructured and updated global soil respiration database (SRDB-V5),” Earth Syst. Sci. Data 13, 255–267 (2021). https://doi.org/10.5194/essd-13-255-2021

    Article  Google Scholar 

  47. Z. R. Kan, W. X. Liu, W. S. Liu, et al., “Mechanisms of soil organic carbon stability and its response to no-till: a global synthesis and perspective,” Global Change Bio-l. 28 (3), 693–710 (2022). https://doi.org/10.1111/gcb.15968

    Article  Google Scholar 

  48. Z. R. Kan, Q. Y. Liu, A. L. Virk, et al., “Effects of experiment duration on carbon mineralization and accumulation under no-till,” Soil Tillage Res. 209, 104939 (2021). https://doi.org/10.1016/j.still.2021.104939

    Article  Google Scholar 

  49. V. N. Kudeyarov, “Soil carbon sequestration: facts and challenges (analytical review),” Biol. Bull. Rev. 12, S109–S122 (2022).

    Article  Google Scholar 

  50. V. N. Kudeyarov and I. N. Kurganova, “Carbon dioxide emission nd net primary production of Russian terrestrial ecosystems,” Biol. Fertil. Soils 27, 246–250 (1998).

    Article  Google Scholar 

  51. I. N. Kurganova, Carbon Dioxide Emission from Soils of Russian Terrestrial Ecosystems (Laxemburg, 2003).

    Google Scholar 

  52. I. N. Kurganova, V. Lopes De Gerenyu, and Y. Kuzyakov, “Large-scale carbon sequestration in post-agrogenic ecosystems in Russia and Kazakhstan,” Catena 133, 461–466 (2015).

    Article  Google Scholar 

  53. J. Lei, X. Guo, Y. Zeng, et al., “Temporal changes in global soil respiration since 1987,” Nat. Commun. 12, 403 (2021). https://doi.org/10.1038/s41467-020-20616-z

    Article  Google Scholar 

  54. S. Majumder, S. Neogi, T. Dutta, et al., “The impact of biochar on soil carbon sequestration: meta-analytical approach to evaluate environmental and economic advantages,” J. Environ. Manage. 250, 109466 (2019). https://doi.org/10.1016/j.jenvman.2019.109466

    Article  Google Scholar 

  55. J. M. Melillo, I. E. Prentice, G. D. Farquhar, E. D. Schulze, and G. E. Sala, “Terrestrial biotic responses to environmental change and feedbacks to climate,” in IPCC 1996. The Science of Climate Change (New York, Melbourne, 1996), pp. 445–481.

  56. L. Mukhortova, D. Schepaschenko, E. Moltchanova, A. Shvidenko, et al., “Respiration of Russian soils: climatic drivers and response to climate change,” Sci. Total Environ. 785, 147314 (2021). doi.org/https://doi.org/10.1016/j.scitotenv.2021.147314

    Article  Google Scholar 

  57. L. Mukhortovaa, D. Schepaschenko, A. Shvidenko, I. McCallumb, and F. Kraxner, “Soil contribution to carbon budget of Russian forests,” Agric. For. Meteorol. 200, 97–108 (2015).

    Article  Google Scholar 

  58. S. Nilson, A. Shvidenko, V. Stolbovoi, et al., Full Carbon Account for Russia (Laxemburg, 2000).

    Google Scholar 

  59. S. O. Oladele and A. T. Adetunji, “Agro-residue biochar and N fertilizer addition mitigates CO2-C emission and stabilized organic carbon pools in a rain-fed agricultural cropland,” Int. Soil Water Conserv. Res. 9 (1), 76–86 (2021). https://doi.org/10.1016/j.iswcr.2020.09.002

    Article  Google Scholar 

  60. R. M. Palma, M. Rimolo, M. I. Saubidet, and M. E. Conti, “Influence of tillage system on denitrification in maize-cropped soils,” Biol Fertil Soils 25 (2), 142–146 (1997). https://doi.org/10.1007/s003740050294

    Article  Google Scholar 

  61. D. E. Pelster, M. H. Chantigny, I. Royer, D. A. Angers, et al., “Reduced tillage increased growing season N2O emissions from a fine but not a coarse textured soil under the cool, humid climate of eastern Canada,” Soil Tillage Res. 206, 104833 (2021). https://doi.org/10.1016/j.still.2020.104833

    Article  Google Scholar 

  62. T. Reinsch, I. J. A. Struck, R. Loges, C. Kluss, et al., “Soil carbon dynamics of no-till silage maize in ley systems,” Soil Tillage Res. 209, 104957 (2021). https://doi.org/10.1016/j.still.2021.104957

    Article  Google Scholar 

  63. Rothamsted. Long-Terms Experiments. Guide to the Classical Long-term Experiments: Datasets and Sample Archive (Harpenden Herts, 2006) (reprinted 2012).

  64. S. Sitch, P. Friedlingstein, N. Gruber, S. D. Jones, et al., “Recent trends and drivers of regional sources and sinks of carbon dioxide,” Biogeosciences 12, 653–679 (2015). https://doi.org/10.5194/bg-12-653-2015

    Article  Google Scholar 

  65. M. Sperow, “Marginal cost to increase soil organic carbon using no-till on U.S. cropland,” Mitigation Adapt. Strategies Global Change 24 (1), 93–112 (2019). https://doi.org/10.1007/s11027-018-9799-7

    Article  Google Scholar 

  66. C. Tarnocai, J. D. Canadell, E. A. Schuur, P. Kuhry, G. Mazhiutova, and S. Zimov, “Soil organic carbon pools in the northern circumpolar permafrost region,” Global Biogeochem. Cycles 23, GB2023 (2009). https://doi.org/10.1029/2008GB003327

    Article  Google Scholar 

  67. H. Tian, C. Lu, J. Yang, K. Banger, et al., “Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: current status and future directions,” Global Biogeochem. Cycles 29 (6), 775–792 (2015). https://doi.org/10.1002/2014GB005021

    Article  Google Scholar 

  68. J. Tian, J. Pausch, G. Yu, E. Blagodatskaya, Y. Gao, and Y. Kuzyakov, “Aggregate size and their disruption affect 14C-labeled glucose mineralization and priming effect,” Appl. Soil Ecol. 90, 1–10 (2015). https://doi.org/10.1016/j.apsoil.2015.01.014

    Article  Google Scholar 

  69. S. Yang, X. Sun, J. Ding, et al., “Effects of biochar addition on the NEE and soil organic carbon content of paddy fields under water-saving irrigation,” Environ. Sci. Pollut. Res. 26 (8), 8303–8311 (2019). https://doi.org/10.1007/s11356-019-04326-8

    Article  Google Scholar 

Download references

Funding

The work was supported by the state budget (project no. 122040500037-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Kudeyarov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudeyarov, V.N. Soil Respiration and Carbon Sequestration: A Review. Eurasian Soil Sc. 56, 1191–1200 (2023). https://doi.org/10.1134/S1064229323990012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229323990012

Keywords:

Navigation